
RADC-TR-8 1 -20 7
Final Technical Report

July 1981

Q INTELLIGENCE PROCESSOR
IŽPERFORMANCE ANALYSIS (IPPA)

Measurement Concept Corporation

Jim Cantrell
SRoger Poland

Jim Labout - P.unker Ramo Corporation

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED]

uJ OTIC
j%-1EC~TE:
\DEC 2 3 1981)

A.
ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

6i 1.2 23 093
*1!

- 4

This report has been reviewed by the RADC Public Affairs Office (PA) and

is releasable to the National Technical Information Service (NTIS). At NTIS I
it will be releasable to the general public, including foreign nations.

RADC-TR-81-207 has been reviewed and is approved for publication.

APPROVED:

JOHN E. FRANK
Project Engineer

APPROVED:

JOHN N. ENTZMINGER

Technical Director
Intelligence and Reconnaissance Division

FOR THE COMMANDER: *445

JOHN F. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC

mailin3 list, or if the addressee is no longer employed by your organization,

please notify RADC (IRDE) Griffiss AFB NY 13441. This will assist us In
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

p

A -,

-w .;A~trt -?~' -----flO

UNCLASS IFIEDI: ~~~~~~SECURITY CLAZSIFICATION OF T141S PAGE (NG 00teu eeniered) _____________

REPORT DOCUMENTA.TION PA-GL READJ INSTRUCTONS.
______________________________3____ BK0~OMPLETIN2~R

111110111V NUAIIIIIII ACSXION No: I. REIt IN C ATALOG !4UMII11

P.ADC-TR-81-20 7 'S-p 16RO& CO/ERED

4 TILE (Subt~e)Fihal Technical Report
INTELLICENCE PROCESSOR PERFORMANCE ANALYSIS 29 Feb 80 -31 Mar 81

(IPP) 9,PIERFORMIN0,010. REPORT MUMBE~

____ ____ ____ ___ N/A

Jim Cantrell F00-QC09
;Roge'r Poland F00-;0C09
ýJim ; about -Bunker_-Ramno Corporat io n _____________

I. PIERFOAMIN34FtfoWANIZATION NAME AND AGORISS 10. PROGRAM CLEME~r PROJECT, TASK(

Measurement Concept Corporation .6 702F`
1721 Black River Blvd'. 45941643
Rome NY 13440 __________

It, CONTROLLING OFFICE;MAMIEAND ADDRESS 12.E REPORf; T DT

Same UNCLASS .IFIED

15a. OCCL A3SI FI CATION/ DOWN GRADING
*SCHEDULE

ill. DISTRjSUTION STATEMENT (of this Report)

* Approved for public release; distribution unlimited.

17. DISTA(BUTION STATEMEVIT (of the abstract entered in Block 20, it different from Report)

SamePoet nier John E. Frank (IRDE)

19. KEY WOR,"'S (Coneffive on reverse mid., it neceatawy and identify by block number)

kMonitor (s) Computer Performance Evaluation
Har'dware Monitors PDP-l1's
AN/GYQ-21(V)

20. AU6a4ACT (Continuie on reveree aide, If necessary end identify by block numoer)

This report has documented the functional design that was developed
for an AN/GYQ-21(V) hardware monitor.

The report provides a concept of monitoring to place the development
of the hybrid monitor in its proper perspective.

The report defines the measurement set the monitor will m~easure.
The functi~onal design includes both the software and hardware components

L with the rationale for their use to be able to monitor the measurement

DD I J N 7 1473 EDITION OF INOV 55 IS OBSSLaTE UNCLASSIFIED
SECURITYf CLASSIFICATION OF THIS PAGE (Iflln Dsta Enter

2 .. /

UNCLASSIFIED
a CURnlTv CL.A281IPCATION OF THIS PAGVW6*. DINO SfiE@VO)

c"vset selected.
The software specifications include tasks such as coordination

between the host processor and monitor, measurements, and measurement
reporting. Foremost in the designer's mind has been the ease of user
interface with the monitor.

The hardware Specifications include such areas as packaging, power
requirements, EMI/RF emissions, Qualifier Logic, and special modules.

The report includes a theory of operations that references the
design and specifications and provides an insight into functional
breakout by measurement requirements.

All of the technical and softwatie~rganizational techniques
presented in the r;..port are within the state-of-the-art. As a result,
the microprocessor based performance monitor possessing an extraordinary
degree of applicability to* all potential users is eminently achieveable.

In short, it is believed that the simplicity of staged measurement
handling, maximum utilization of nonsensitive probe interfaces such as"j
the 21(V) busses, and the integration of passive hardware, active hard-
ware, software, and cooperative hybrid measurement/control techniques
provide RADC and the end user with a highly useful, low risk product at
a cost commensurate with the complexity of the user requirement.

r1

4
T-

UNCLASSTFI ED
SECURITY CLASSIFICATION OF T- PAGEWF~flh Data &Entwd)

TABLE OF CONTENTS

Page

1.0 INTRODUCTION . 1-1
1.1 Overview-

1.2 Measurement Methodology 1-3

1.3 Data Flow*. 1-16

1.4 Scenario of IPPA Utilizationa. 1-17

2.0 SOFTWARE OVERVIEW o.... .. . 2-1

2.1 Mea.sirement Definition/Compilation 2-2
2.2 Host Processor Microprocessor Coordination 2-24

2.3 Measurement 2-34

3.0 BL.RDWARE DESIGN 3-1

3.1 Hardware Overview 3-1

3.2 Packaging . 3-35

3.3 EMI/RFI Emissions 3-36
3.4 Power Requirements 3-37

3.5 Qualifier Logic (Sheets S and T) 3-41 n
3.6 Peripheral Activity Module (Sheet U) 3-43

4.0 THEORY OF OPERATIONSo 4-1

4.1 Overview 4-1
4.2 Unibus Interface (Sheets A thru F) 4-7

4.3 Microcomputer (Sheets G thru M) 4-19

4.4 Associative Memory Sheets N thru R) 4-31

5.0 PRELIMINARY PARTS LISTS (MAJOR COMPONENTS) AND

TIMING DIAGRAMS 5-1

6.0 List of Selected Data Specifications 6 -

i

LIST OF FIGURES

Page

1-1 IPPA Hardware Probe Concept... 1-

1-2 NPR Arbitration......1-

1-3 -Data Flow Chart 1-19

1-4 Sof tware Modules. 1-20

1-5 Pre-Measurement Data Flow.1-21

2-1 Microprocessor Memory Map.2-35

3-1 MC 1/0 Address Devices. 3-4

3-2 STC Address Decoding. 3-1.1

3-3 Interrupt Controller Address 3-12

3-4 Bit Assignments 3-i6

4-1 Mixed Logic Gates.4-3

4-2 Associative Memory - Simplified Block Diagram 4-32

4-3 Associative Memory General Timing4-34

'i

......

LIST OF TABLES

Page

3-1 MC Address Space Haping 3-1

3-2 MC I/O Devices Addresses .*.. 3-7

3-3 CSR Bit Assignments 3-18

3-4 Command Field Summary 3-20

3-5 Error Register Bit Descriptions 3-23

3-6 STC Counter/Timer Functions 3-26

3-7 Interrupt Table 3-29

3-8 Power Requirements 3-38

I

..i

II

iii.

- ;

l-U NTRODUCTION

Measurement Concept Corporation (Mc2) submits this Final Technical

Report covering the results of the Intelligence Processor Performance

Analysis (IPPA) study effort. This project involved engineering

services to validate the operation and characteristics of a

iiardware/software (hybird) performance monitor for the AN/GYQ-21(v),

anad to produce detailed engineering specifications for a very low

cost, expandable Prototype Model. During the effort Mc2 and itsiI subcontractor, Bunker Ramo Corporation, have produced designs of the

software and hardware for the IPPA. Those designs are presented

within this document. The balance of this section presents the

overview of the hybrid monitor.

The design is sectioned into two volumes. The first ,olume provides

all software and hardware design elements and the second volume

contains manufacturer reference material for devices used

Chapter 2 describes the configuration of the software

modules required for IPPA. This includes software to intercept data

within the host and to relay that information to the IPPA hardware,

plus the software necessary to process the data in the hardware's

microprocessor.

Chapter 3 describes the design of the hardware portion of IPPA, and

explains the basic hardware units that constitute the monitor. This

is expanded in Chapter 4 - Theory of Operation - which also contains

schematics of the design. A parts list and timing diagrams

appropriate to the design appear in Chapter 5. A list of selected data

specificatiois appropriate to the design appear in Chapter 6.

1-1

.1overview

The overall hardware/software (hybrid) monitoring approach Involves

hardware probes which are supplemented by software *probes" in the

monitored "21(v)" CPU. In thie approach data from both probe types[are processed together to detect events that could not be detected by

Independent hardware and software monitors.

excuie iecivsar etctdbyahotresident, interceptive,h

v system-transparent software monitor based upon proven technique. that
have been demonstrated by Mc2 in its software monitor. To minimize

L host artifact, very little processing beyond event Identification is

to be performed by host resident software. Instead, the coded "event

number" is to ba passed to the microprocessor in the hardware monitor
through a register set addressed in the host's "external" address

page. Thus the software probe's interface to the microprocessor looks

like a peripheral controller port.

There are two software probe data transfer paths to the hardware

monitor; one will interrupt the hardware monitor's microprocessor's

event processing logic, the other will directly modify an event "mask"

register in the hardware monitor. This mask is used by relatively

high speed event detection logic to determine, among other things, the

occurrence of software state-related events.

Because of the 21(v) bus structures, most (buL not all) of the

information needed by system engineers and developers is available

without need for discrete probes. This design approach makes maximal

use of bus-derived information and thereby reduces both cost and

interference with normal host utilization. Whenever possible, busI
data common to all 21(v)* mainframes (i.e., Unibus and Console) is

used. Mass bus data (11/70 only) is collected by a separate board

which is not present in lower level 21(v mainframes.

1-2 1

The hairdware probe concept involves four levels of

deection/processing an depicted in Figure 1-1. At Level 1, very high

speed signals are preprocessed to determine "logical"' level, slower

speed signals that are used for event detection and counting at Level

2. The IPPA microprocessor processes accumulations of Level 2 data

I. &Alr*4 a few critical Leviel 2 events at the more leisurely pace (IOU

microseconds) of Level 3 and completes more complex data organization

function. at Level 4 (m~liiseconds or more).

1.2 Measurement Methodology

This section provides a brief overview of the IPPA mechanisms invoked

to satisfy the measurement set provided in Annex i to the SOW. This

F section does not attempt to identify specific hardware/software IPPA

components to be used for each measurement but Instead deals with each

measurement on a conceptual basis. Transfer of concept to design

takes place in later sections of this document.

1.2.1 Aru Measurements =CPU Performance

1.2.1.1 Task Time -CPU

A software probe intercepts the host upon completion of an active task

list scan. If the task to be given control is a task being measured,

the software probe so informs the hardware monitor. The event causes
a time stamped microprocessor interrupt and/or it directly enables a

gate. Task exits occur via EMT's or interrupts. EMT's are detected

by the host software probe and the information is passed to the

microprocessor in a manner similar to that above. Interrupts are

directly detected via INTR by the IPPA hardware probes and are used to

interrupt the microprocessor at high priority so that the task timing

1-3

.............

F

"iRaw" Bus and Discrete Data

Level I -p
Prcsig ~vent Miclroprotesso

Procssing "Fixed" gal Counters Memory/port
(very high speed)

r•nd di"ct counting Processing j =tate
lor ~ 2Timersfor L~vel 2•["__r•~_I'

(Preprocessor)

Level 2 Synchronized Secondary High
Processing State/Event Lines Speed ProcessingPrcsigI {(PAMH, I•°esn

(Intermediate

Speed)D
"Associati,.v" fiemory

DRAM ARAM

Processi ig Mict-oprocessor

(slower speed)

!.D - Data

and Level 4 - Interrupt
"bookkeepl ing"

Figure 1-1 IPPA Hardware Probe Concept

1-4

-~' '.X-.

cnbe 'captured. Returns from EMT proesin and inerp service

routines are intercepted by the software probe which posses the

information back to the microprocessor.

1.2.1.2 Event Time - CPU

The set of possible events is very large. Software events Include

task start and task stop. Hardware events can be determined by

combinations of CPU priority and mode, bus cycle type, BRINPR status.I instruction fetch virtual address, and value of data transferred.

Evcnts able to "'bump" a counter or change a clock status will also be

able to interrupt the microprocessor. However, some of the more

esoteric combinations of signals (BR/NPR status combined with one or

more of the other above) would be difficult to detect as It is

L unlikely that all signals will be brought together into one combined

selection matrix. Such a combination was therefore not considered.

Qombinations of virtual address, data value, CPU priority/mode, and

bus cycle type will, however, be detected by the design. Event

detection will cause a time stamped interrupt of the microprocessor

F for later (although "near real time") proceasing in a relatively

leisurely fashion.

1.~.1.iPercent Time Kernel, Supervisor, User Mode

The desil'n provides a set of hardware timers dedicated to this

F measurement (i.e., the measurement is one of the minimal baseline

set). The signals are obtained from the front panel of the CPU.

Timer overflow will cause a microprocessor Interrupt.

1.2.1.4 Percent Time at Priority Level

The design provides a set of hardware timers dedicated to this

1-5

measurement. Priority level information is obtained from discrete

probes.

1.2.1.5 Percent CPU Not Busy

This information is obtained from the CPU front panel. and directly

enables a fast counter dedicated for this purpose.

1.2.1.6 Percent CPU-I/O

Thq CPU "RUN" state signal obtained from the console panel is "AND"ed

with the Unibus cycle or MBC signals to determine when CPU-I/O overlap

occurs. This signal enables a timer to obtain the desired

measurement.

1.2.2 Grou B- Unibus Performance

1.2.2.1 Unibus Acquisition Time

This is construed to mean the time between when a "master" desires the

bus and when it actually acquires it. For non-COU devices, these

times are identical to either the SOW Group B items 4 or 5 - Bus

request and NPR latency.

1.2.2.2 Unibus Occupancy

This measurement is equivalent to timing the Unibus signal "BBSY". A

dedicated hardware timer will be reserved for this measurement.

1.2.2.3 Interrupt Response Latency

This measurement determines the time between a non-CPU master

assertion of INTR and the completion of the CPU interrupt sequence.

1-6

It is believed that, as the value Is unlikely to change for a given

CPU unless hardware problems arise, this measurement is best obtained

by a maintenance technician with a scope. -It is unlikel!j that this

measurement will be performed by the currently conceived IPPA.

1.2.2.4 NPR Latency

NPR latency is the time between a given device's assertion of NPR and

the receipt by the device of an NPG. It is believed that the

importance of this measurement Is related to NPR contention, i.e., the

times when NPR remains high for longer periods of time. One case
arises when NPR remains high after arbitrator assertion of an NPG. As

the NPR/NPG cycle will normally occur rapidly when CPU is master, NPR

contention is a strong indicator that one DMA device will need to wait

until a second device has completed its transfer. Secondly, assertion

of NPR when CPU is not master also can result in a longer latency for

the requesting service.

The actual timing of most NPR/NPG pairs is purely a function of the

specific hardware and except in cases of contention as above, the time

will not vary except if there are machine problems. The large number

of "normal" pairs can hide abnormalities unless the abnormalities can

be specifically and separately measured.

It is therefore determined that the useful measure is NPR contention

and not merely latency.

Because of the high speeds involved, this measurement is to be handled

by dedicated IPPA hardware. The initial goal is to measure the total

contention time and the number of times contention is detected for all
Unibus peripherals. To accomplish this, the IPPA design provides two

measurements, either of which may be selected at a given time. In the

first mode, total NPR time and the count of NPG's are measured. This

provides an average NPR/NPG latency for use in more complex measures.

As illustrated in Figure 1-2, the NPR contention time is determined as

the sum of the statistically determined non-contended NPR/NPG latency

and, in those cases where NPR remains high after issue of NPG, the

time taken by the non-processor device to complete its transfer.

Therefore, the count of NPR deassertions provided by the second mode,

when subtracted from the number of NPG's (provided in both modes) is a
measure of the actual latency caused by contention as it establishes

the number of whole non-processor transfer Cycles that occur when NPR

is contended. The system does not need to be accurate to more than

several hundred nanoseconds as we are looking for contention Cimes in
excess of one microsecond.

1.2.2.5 Bus Request Latency

Bus Request Latency is nominally defined as the time between device

assertion of a bus request and receipt of a bus grant. Unlike NPR's,

the BR may not receive a grant if the CPU is running at a priority

level equal to or greater than the level of the DR. As a result this

measurement is an indicator of device delays caused by execution of

code (e.g., an interrupt service routine) having a higher priority

level than the bus request.

Whereas NPR latency is a measure of Unibus contention, bus request

latency is more a measure of contention for high priority CPU

resources. As a result, the desirable timing quantization is more on

the order of an instruction cycle than a fraction of a bus transfer

cycle. Errors of a few microseconds in an interrupt service routine

(1SR) time of 1UU microseconds are therefore acceptable.

F.

The IPPA will count the total amount of time that each BR is held high

and the number of times it is brought low. As the total number of BG

Counts is also known by BR level, the difference in counts is a

1-8

Ii

-,.Contention Time

-NPR

SBOSY 2

NPR

NP'
4J- SACK_

tI At 2 At 3

NPR
Latency t At1 At t

AtI' &t2 At3

1-2 (a) 1-2 (b)

Non-Contended Contended

At] - Elapsed time between NPR and NPG

At 2 = Elapsed time between NPG and SACK

A t 3 = Elapsed time from SACK to BBSY

At) is conttant in both cases.

A t is lengthened in contended cases for the duration a second NPG cannot be issued.
This time is approximately that between the first bus grant and the dropping of
BBSY by the master at time of contention. It is therefore, an average bus
acquisition time.

A t3 is also lengthened by an average bus acquisition time.

Figure 1-2 NPR Arbitration.

1-9

";~

measure of the number of times for each BR level that BR latency is

raised by multiple requests at the same BR level. The accumulated BR

time divided by the count of BG's is the average latency. By using

the average latency at very low request levels as a baseline for

noncontention BR service times, we may remove this baseline fron the:

total measured times. This leaves only contention time which IPAy bf!

divided by the number of contentions to yield average contention time.

It is noted that total contention time is, by itself, a valuable

measure.

As the high performance peripherals will be at high BR levels and as
they are of most interest, this scheme is expected to provide the

necessary Information.

1.2.2.b UMR Utilization

LMR's are infrequently modified and then only through host software.

Their state will be made available also by host software means.

1.2-2.7 Number of Transfers per Second

A separate counter is dedicated to counting Lhe MSYN/SSYN pairs. The

counter may be read by the microprocessor.

1.2.2.b Read/Write Counts

The bus signal lines C%) and C1i are monitored. Either slave writes or

slave reads are counted so that, with total transfers, both are known.

1.2.3 Gro C C a Peripheral Performance

1-10

1.2.3.1 Memory Referencesb Range

This is a mixed item that includes both CPU and peripheral performance

measures. For non-task-oriented references, physical addresses are

obtained from. the console connection. The associative

address-processing logic of the IPPA Address Associate Ran (ARAM)

performs the range partitioning and is supported by "Read/Write",
"Fetch", and similar signals that "mask" the partition events.

A

A key ingredient of the IPPA design is the use of virtual addresses

for all task-oriented memory range measurements:

0 Programmers do not know physical addrcLses when

assembling/ task building code.

0 Programs are not always loaded at the same physical

addresses.

Using virtual addresses provided by the CPU console and task

activation/ deactivation data provided by the software probes, the

same "ARAM" iogic used for 1.2.3.1 is applicable to this measurement.

1.2.3.3 R/W to Peripheral Controllers

All R/W commands and programmed I/O appear on the Unibus. Addresses

are unique for each controller/port and can be matched by several

methods including th, ARAM and "smart" controller of the Peripheral

Activity Module (PAM). Data is also available so that the "go" bit of

a standard CSR register can be detected. Programmed 1/0 is a special

case of a memory partition one word wide so that all such I/O can be

counted via ARAM output.

1-1

1.2.3,4 NPR's/Cuntroller and Unit

This is a most difficult measurement to make without discrete probes
to each peripheral. The IPPA design concept minimizes such probes for

emission reduction and operational reasons so that this area requires

more sophistication than most others.

In short, a high speed, bit slice micro is tasked wih intercerting

word count and buffer addresses for selected peripherals. When ready
to transfer data, a Unibus peripheral controller becomes bus master

via the NPR/NPG and puts a buffer address on the Unibus so that the

monitor can compare it to the buffer address range of the selected

peripheral that was previously intercepted.

As each Massbus peripheral may be uniquely identified by its location

on the bus, no such sophistry is needed for these cases.

1.2.-3.5 INTR's by Controller/Unit

This is accomplished by the VECR circuitry which detects the

INTR and determines the vector address placed on the Unibus by the

controller. As unit selection is also known, the INTR may be assigned

to the selected unit.

1.2.3.6 Memory/Peripheral Transfers/Seconds

The above paragraphs show how programmed 1/0, CPU operations, NPR

transfers, and Massbus transfers can individually be detected. This

measurement is obtained by counting the total of such transfers and

dividing the count change by the time interval over which the count

changed.

"1.2,3. Transfer Service Time

As the "GO" event and INTR are both detected by the IPPA hardware, a

1-12

straightforward time stamp of these events enables the microprocessor

to do the necessary calculation.

1.2.3.8 Number of On-Line Terminals

This will bs handled by host software elements,

1.2.3.9 Number of Units Busy

This measurement loses value unless it is an instantaneous "snapshot"

of system activity. It is therefore suggested that in lieu of this

measurement, we determine the percentage of time that a unit is bisy.

For DMA devices this is the same as paragraph 1.2.3.7 where a

measuring count is maintained. For non-DMA devices, (e.g., a printer)

no such measure is available without discrete probes. We therefore

suggest that transfer rate be used as a measure of unit "business"

(see paragraph 1.2.3.3) in this case.

1.2.3.1u Disk Head Motion/Position

This information will be detected by the peripheral activity module
(PAM), which monitors the 1/0 page and associated registers of DMA

devices such as track/sector addressing.

1.2.3.11 Disk Start/Stop Times

The IPPA design will not provide this measurement. It is believed
this data is better obtaired through computer operator procedure logs.

1.2.3.12 Cache Acquisition Latency/Contention

Multiple requests to the memory logic are detected via "AND" gates.

1-13

When multiple requests are active, the resultant signal will enable a

counter and/or timer. Total contention time divided by the number of

contended accesses provides average contention time.

1.2.3.13 Cache [lit Rates

The cache slow cycle signal is monitored and the number of such cycles

is counted. As the total number of cache read/writes is also

monitored, the hit rate is determined by simple ratio.

1.2.3.14 Cache Memorz Transfer Rate

See paragraph 1.2.3.6.

1.2.3.15 MBC Percent Busyl

See paragraph 1.2.3.9.

1.2.3.16 MBC Transfer Rate

See paragraph 1.2.3.4

1.2.4 Program Performance

1.2.4.1 Task Request Rate

This is obtained by monitoring the request directive in the executive.

It is accomplished with the sofeware probe which passes the coded data

to the microprocessor for storage and accumulation.

1.2.4.2 I/O Request jy Task/Device

The software probe intercepts "QIO" directives.

1-14

k : "11 I! - -:- "• • •:'•

1.2,4.3 Ntmber of Active Tasks in Memory

This is accomplished by software in the host that is activated at

regulrnr intervals to sample the status of the host OS.

1.2.4.4 Memory. Allocation

This data is acquired by intercepting the system's memory management

routines, using the routines' inputs, and passing them to the

microprocessor.

1.2.4.5 Node Status

The information on node allocation and deallocation is performed in a

similar manner to paragraph 1.2.4.4

1.2.4.b Instructions/Second

This is obtained by counting the number of "Instruction Fetches" in a

given period of time. The signal is obtained from a discrete probe.

The counter is armed/disarmed by software events such as task

start/stop.

1.2.4.7 Instruction D.-st•v.ibut io•i

This option will oe provided by a separate program that will run the

program one instruction at a time and collect the instruction

distribution. This boftwere and hybrit monitoring should not be done

at the same time..

1.2.4.8 Floating Po.'.nt Instructions

The IPPA design provides for limited matching of data via the Data

S~1-15

Associative RAN (DRAM). As instructions appear on the data lines]
during the instruction fetch, the limited number of floating point

Instructions can be detected and counted.

1.2.5 Fault Detection/Isolation

1.2.5.1 Slave Faults

A slave fault (no Slave Synch acknowledgement) causes CPU trap to

address 4. Software can intercept the normal flow to obtain desired

information.

1.2.5.2 Trace

Software will be provided to obtain this measurement offline from a

monitoring run.

1.2.5.3 Error Counts

These errors are best obtained by the error log programs provided by

Digital Equipment Corporation. However, the programable nature of

the PAh makes sampling of a device's error bit at INTR time re] itively

straightforward.

1.2.5.4 Unclaimed NPG, BG

It is our understanding that the system fails safe under conditions

where NPR/BR does not drop with NPG/BG except that the instruction

execution rate would significantly drop and/or, if the failed device

is close to the arbitrator, devices iurther out on the Unibus could

not be serviced. In case one, the lowered rate is detected. In case

two an error is detected (paragraph 1.2.5.3) or the sybtem "h&..is" in

a state known to the peripheral activity aodu~le.

1-16

1.2.5.5 memory Out of bounds

See paragr.aph 1.2.5.1.

1.2.5.6 Odd Addrress Error

See paragraph 1.2.5.1

1.2.5.7 Multiple NPR's

See paragraphs 1.2.5.4 and 1.2.2.4.

1.2.5.8 Multiple RR's

See paragraphs 1.2.5.4 and 1.2.2,5.

1.2.5.9 EMT Service Time

The software probe intercepts issued EMT's and can count specific Eff's

by task, all ENT's by task, total occurrances of specific MMT's or

total occurrances of all ENT's. IOTas are handled similarly.

1.2.5.10 Event Driver Trap

This %easurement is obtained in the same manner as paragraph 1.2.5.1.

1.2.5.11 Power "Glitches"

Because of their multiplicity and spatial dispersion, there is no

Intent at this time to monitor the actual power lines.

1-17

1I [. . .- • • • ; •A

S.2.5.1 2 Power Failure

Upon a significant enough a8itch* in power, the bus ACLO and DCLO

lines are changed and the CPU enters a power fall trap. Detection via
the trap Is easy. Specific processing to be accomplished includes

notification to the microprocessor but processing must be kept to a q

minimum to allow normal OS-provided graceful shutdovr. 1

1.3 Data Flow

The flow of data through a monitor session is discussed in this

section in three logical phases:

o Pre-measurement Phase

o Measurement Phase

o Post-Measurement
Phase

Figure 1-3 depicts the data flow through the phases, and the
inter-phase relationships. Figure 1-4 depicts the tree structure of
software modules which pertain to each phase.

1.3.1 Pre-Measurement Phase

The pre-measurement phase involves interaction with the user while the

user defines the monitor session through a series of menus. The

responses from the menus then become inputs to the compiler. The
output of the compiler is then input to the measurement session.
Figure l-5 depicts the data from through the pre-measurement phase.

1-18

Previous o Interactive Program Parameter Clhooice I

ve WError hessages and
'OU' Warn in Conditions]

Sav

User Control Determines which units &time?

E etr.abl n Measurement Execution
o Load exec~unit in

mi croprocessor
o Atch.software probes
o Be in execution

(Host Software Probe)

IlTime Sampled Monitor
Eet

2LDtaDt

HHousekeepingRetrieve stored data and
reset various tables,

L counters and clocksIReport Generator
Use data on file to
produce reports,
histograms, etc.

Figure 1-3 Data Flow Chart

1-19

.1 a1

0 --

LL 0

.43.

E0.

di r-
E 0 w

00l 0iu 1. L 1 t.S

001

Cý

I- Ch

do to
"0 Al 4J .O

.1d.

4J 0

w 0J

La

4A4

1-20

Medal Microen

Meaunuen

Exesutons

Figre -5 re-easremnt Data F Cow lcto

Infr21io

1.3.2 Measurement Phase

The measurement phase involves the loading of the compiled oupt and 411
the execution of the monitor session Itself. Figure 1-6 depicts the

data flow involved with loading the measurement software into the host i
and microprocessors. Figure 1-7 depicts the layout of the measurement 1
software once loaded, and the interaction between the components*

1.3.3 Data Collection Phase

Upoi. completion of a monitor session, the captured data is collectedU
into a data file. This data file Is then used by the report

generation software to generate the requested reports. Figure 1-8

depicts the data flow for the data collection phase.

1.4 Scenario of 1PPA Utilization

The IPPA hardware and software design is oriented to tioio levels of

user. The first level applies to design engineers and makes available

the full power of the IPPA system through manipulation of

microprocessor- and host level software. This level will not normally i
be used in the field. The second level applies to the system user and

performance assessment engineer. lt makes available a precision tool J
kit that provides for the definition of measurement sets and post

measurement analysis without the need tor detailed awareness of the
IPPA logic itself.

The following scenario portrays the sequence of events as seen by a

system user in defining and executing a desired set of performance

assessment measurements.

Many of the individual measurements identified in Section 1.2 are

directly accessible to the system user. This access is provided by a

1-22

Host Loadable Micro
Measurement Measurement
Execution Execution
Package Package

Loaerip/ri

Execution.;
.. r•Executive

Host i,..eS
Memory •°* :

Host

Feasurem i nt 1 DExecutioi
IPackage Host 1/0,'

) ~Handler i

•Mi c ro 1/0
:2, Handler

Control•
Mi cro. Modul es

S-,Memory Peripheri1 s

Figure 1-6 Load Data Flow

1-23

! I

Intercept rtercept Micro
Clock

Unibus Hs
IntefkceIntercept

Micro Clock HandC'

Cone/ Cut /Counter/ Micro
CoTroiimreTmr Executive,,

ounrsTiersTmr ieto

or
Figure1-7 MesuremetaExectiont Image

1-24

Data
Collection
Information
File

Host Daita ' \
Stored Collection
Data "-Nodu Ile A

Collected
Data File

I/O

Report
Generation
h'odule

Figure 1-8 Data Collection

12

1-25J

command language which enables the user to specify the measurement

type and any parameters associated with that measurement. As an

example, the detection of task activation and deactivation requires *
the parameter "Task Name".

Through use of an interactive menu display, the user brings together

several such primitive measurements through logical constructs such as

"and", *or., or "not". The combination of these primitives is a

complex measurement which can be given a specific name and may be

stored on disk for later use.

The user will identify one or more complex measurements that are to be

concurrently executed on the IPPA. He will then "compile" this

measurement set into an executable module - also given a name - that

can be loaded into the IPPA upon command. The compiler will collect

all necessary software elements and create appropriate table entriers

for use by the IPPA software. The compiler will also inform the user

if the measurement set requires more resources (counters, timers,

associative memory loations, etc.) than are available within the IPPA.

The compiled measurement set is also stored on the system disk. It

is, however, possible that in later versions much of this information

could be stored on peripherals directly connected to the IPPA

hardware.

The user may then call for the loading of the measurement set by name.

* The measurement set can be loaded at a specific future time of day,

the same time or times of day for future days, or for one time only.

Once loaded, the software and table structures of the measurement set

are in place, and the measurement may be performed.

1- 26

During a measurement, occasional transfers of information from theI

microprocessor to the Lt disk are allowed. This could occur when a

*snapshot" iunction is declared so that statistics over a long perio~d

of time can be accumulated and reported for smaller intervals within
that time period.

I' The measurement will complete either upon user command or according to
p predefined total time of execution. Upon completion, the last

measurements still stored in the microprocessor are transferred to the

host disk for storage and later analysis.

peripherals, storage of snapshot and measurement completion

information could be accommodated on these peripherals with- no Impact

on the host disk system.

Information generated by the measurement compiler is then used by

report programs to produce the desired analytical reports on the host

svster. printer.

1-271

2.0 SOFTWARE OVE.RVIEW

This Section contains an overview of the software required for the

.1.hybrid monitor. The modules have been divided Into four functionalI

o Definition and Compilation

o Host/Microprocessor Coordination

Section :. :::::::::n:he ::::::reioue which interact with the I
user during the measurement definition phase of a monitor period.

This process involves interactive menus which help the user to define

the measurements to be collected. Results of this interaction areI

passed to the compiler, whiclh produces the tables that control the

measurement collection process.t

'7Section 2.2 describes the software modules that permit the host

computer and the microprocessor to communicate. Communications falls

into two categories. The first category of communications concerns

transmission of data involved with down-line loading the
microprocessor with its controlling software and processing tables,
and up-line loading of collected data. The second category of

host software and then transmitted to the microprocessor for

processing.

Section 2.3 describes the modules which collect, process and store the

measurement data. The processing and storage modules reside on the

2- 1

micrOPTOCOS5O?, while the collection modules reside on both the host

computer and the microprocessor.

Section 2.4 describes the modules which create reports using the data

collected during a monitoring period.

2-1 Measurement Definition/Compilation]

This set of modules interacts with the user to define a measurement

ression and to create control structures which initialize measurement

hardware, perform measurements, process the measurements and report on

the data collected. The measurement definition/compilation modules

are discussed in the remainder of this section, and have been divided

into two groups for discussion purposes:

o Measurement Definition

0 Compilation Process

211Measurement Definition

This set of modules is responsible for determining the requirements of

a user' s Measurement session.

The measurement definition process also receives inputs from the

textual menus, as well as from previously defined measurement sessions

stored on disk. The combined inputs to the defintion process are

converted into data structures used by the compiler. The definition

process also verifies that the measurements requested by the user can

be performed and have been properly defined.

Thie outputs from the definition process are stored on disk and

displayed on the user's terminal. The disk structures are divided

2-2

into two areas of concern. The first area deals with the static

k measurements, as well as all the hardware measurements and those

softwarei measurements that do not ri'quire compita definitions. The

second area consists of those software measurements that require

complex definitions.

The six definition modules are described in the remainder of this

section:

0 User Interaction Module

o Static Initialization Module

0 Dynamic Initialization Module

0 Monitor Setup Module

0 Help Module

0 Measurement Manipulation Module

2.1.1.1 User interaction Module

This module controls the execution of the entire definition phase of a

monitoring session.

0 Inputs -The User Interaction module reads the menu file and

the help file depending on the user's Input. It will also,

when requested, read in the contents of a previous measurement

file.

0 Process - This module validates (syntactically) the user's

inputs to a menu. On an error it will display an error text

2-3

and ask [or correct input. When correct date has been
entered, thin module will perform the indicated function. The
functions ft~ll into six categoriest help functions* static

measurements, dynamic measurements, monitor setup, Measurement

m~anipulation and disploay a new menu.

0 output@ This module in responsible for displaying all menus,

help texts and error messages to the user. It also passes all

user input to the lower level modules to perform the functions

requested.

2.1l.1. Static lnitialisa05)n Module

This module involves the static measurements. These measurements

consist of all harduare measurements and a standard set of software

measurements. Three measurement oriented modules are called by this

module.

o Inputs - This module receives data indicating which

measurements to perform from the user via the user interaction

module. It also reads in formatted tables from disk

indicating how to perform the measurement.

0 Process - One of the following modules is called. depending if

the measurement is hardware or software related.

0 Outputs - None.

2.1-1.2.1 Hardware Initialization Module

This module translates the user's request for hardware measurements

into the table or tables necessary to initialize, process, and report

the measurement.

2-4

a Inputs -The code number for the measurement requested, the

code of how to process the data collected, and an Indication

as to whether the hardware interrupts an overflow or every

time the *vent occurs.

a Process - Fills the Hardware Static Measurement table with the

preload value for the counter/timer, and an Indication of how

to process the interrupt generated by the counter/timer.

0 Outputs - The output consists of a Hardware Static Measurement

table necessary to Initialize a counter/timer.

2.1.1.2.2 Peripheral Activity Module

This module allows user to monitor a peripheral on the host.

0 Inputs - ASCII text from the user interactive module

containing the device to monitor and the options chosen.

0 Process - The device name is verified to assure the device is

configured on the system. The options are then verified to

assure they are correct for the device monitored.

0 Outputs - The ASCII. string received as input will be the

output.

2.1.1.2.3 Host Software Module

This module performs an analogous function to the hardware

initialization.

0 Inputs - This module is supplied with information about the

software functions selected. This consists of the code number

2-5

of the function, the format to process th* data Into, and

Information on the fequency and number of times to collect theI
data.

a Process - A Software Static Measurement table entry Is created

that Inform* the monitor executive about the monitoredA

function. It takes the user supplied inputs and places them

In their correct positions in this table.
J

0 Outputs - The output is the Software Static Measurement table

that will inform the monitor executive which static sof tware

measurements are being performed.

2.1.1.3 Dynamic Initialization Modules

This collection of modules build and validate the data structures

necessary to recognize complex software "happenings"M and process them.

These "hiappenings" fall into two categories: events and statii. An

event is defined as an occurrence. It has no time dimension. I

Examples of events are the occurrence of an interrupt, the change in a

signal level, and the issue of an EM4T. Events can be counted or

histogramed. A status (plural statii) is defined is a condition. It

has a time dimension and can therefore be timed. The change of status

is an event. The status "EMT in process" Is defined by its starting

event (issue of an EMT) and its terminating event (ATL s~can, ISR

beginning, etc.)

This formality of definition supports experiment definition error

detection as, for example, the logical "AND" of an event and a status

is equivalent to a "gated" event, the "OR" of two events is always an

event, etc.

2-6

This collection of modules receives its inputs from the* User
rInteractiou module. These modules process the user's input into data

structures the compiler uses to set up for complex software

measurements. The measurements are also validated to assure that too

many measurements-have not been defined and that the measurements,

defined are performable.

The outputs from this collection of modules are: an ASCII table of

defined events and an ASCII table of defined statli; an ASCII table of

Boolean logic to perform on events and statii and what measuremients

will be performed atter the Boolean has been applied.

2.1.1.3.1 Define Module

The Define module allows a user to define the basic software events to

be measured. These events are the basic building blocks of the

dynamic measurements.

0 inputs - This module receives an ASCII string from the User

Interaction module. This string can define an event to be in

any of the following areas: task execution, EMT execution or

the setup data for an ARAM, DRAM or CRAM measurement.

0 Process - The input to the Define module is validated for

correct alphanumeric usage and the syntax of the command. If

these checks are satisfied the input is passed to the Examine

Dynamic Measurement Modules (2.1.1.3.4).

0 Outputs - One output from Define Module is the validated input

strinig. The other ouputs consist of err-r, texts to the user.

2.1.1.3.2 Event Mlodule

The Event Module has two functions; it allows for the logical

2-7

combination of previously defined statii and events into new events,

and it instructs 1PPA to measure an event.

0 Inputs - The input contains the event name to process,

how the event is being defined and how to process the

event if applicable.

o Process - This module validates the syntax of the

event and the alphanumeric string. The string, if

valid, is then passed to the Examine Dynamic

Measurement Module (2.1.1.3.4). If not valid the user

is told of the error and asked to correct it.

o Outputs - One of the outputs of this module is the

validated input string. The other outputs consist of

error texts sent to the users.

2.1.1.3.3 Status Module

The Status module is used to build complex measurements using I
previously described measurements. The format is a status name, i
starting event, ending event and optionally an action or status name,

Booleian expression, status name and optionally an action.

o Inputs - The input is in alphanumeric string received

from the User Interaction module.

0 Process - This module validates the input received

from the User Interaction module. It is validated for

syntax and alphanumeric characters. If the input is

valid the Examine Dynamic Measurement module -

(2.1.1.3.4) receives it, otherwise the user is

informed of his error and asked to collect it.

o Outputs - None.

2-8

1I:

2.1.1.3.4 Examine Dynamic Measurement Module

This module verifies the vser's requests, for measurements. These

verifications include whether sufficient software and hardware support

are available, and that all the event and status names used have been

defined. The second step of this process is to translate the user's

input into the data structures required by the compiler. The Validate

Dynamic Measurement and Build Measurement Structure Modules are used

by this module.

o Inputs - The, ASCII strings validated by Define, Event

and Status modules.

0 Process - The Validate Dynamic Measurement Module is

called first. If no validation errors occur then the

'Build Measuremert Structure Module is called.

o Outputs - None.

2.1.1.3.4.1 Validate Dynamic Measurement Module

This module validates that a user's measurement can be provided.

o Inputs - The input to this module consists of a

verified (syntactically and alphanumerirally) Define,

Event or Status string, that the user typed in.

o Process - This module verifies that all event and

status names used have been defined. It also checks

to see that statii are defined by statii events and

that events are defined by an event, or a status and

2-9

___________ ,._____.___ _- - .- - ,- - , :-... -- ' - " , ' .7 -'-, --... ' nn....

j'I

an event. If the input passes these tests, a success

code is returned to the Examine Dynamic Measurement;

Module. -If it does not pass, a failure code is

returned to the Dynamic .Measurement Module.

0 Outputs - There are two outputs from this module. The

first is the success/fAilure code. The second are any

error texts that are displayed to the user.

2.1.1.3.4.2 Build Measurement Structure Module

This module adds newly defined events and statil to the data

,structures needed by the compiler and the Validate Dynamic Measurement

Module.

0 Inputs -- The input to'this module is the completely

validated event or status definition.

0 Process - This module attempts to add the new event or I•-
I'

status to the Event or Status Tables. If it can

allocate the table space, it then adjusts the resource

available counters for each resource necessary for the

measurement.

0, Outputs - This module has a success/failure code that

is returned to the Examine Dynamic Measurement module.

Any errors found in allocating table space or

resources available will produce an error text for the

user •

2.1.1.4 Monitor Setup Module

This module controls the execution of the monitor run. It can be used

2-10

to define the start/stop time for the monitoring session, the

frequency of data collection from the microprocessor and host monitor,

and a unique filename to store the collected data and run files on.

This module calls the Sitart/Stop, File Name, and Collect setup

modules.

o Inputs -This module receives input from the User

Interaction Module.

0 This module validates the syntax and alphanumeric

content of the input. If valid, the appropriate setup

module is called and the user's input is passed to it.

rOutputs - The valid user request is passed to the

appropriate setup module. If any errors are detected

Ii ~in the statement, an error text is displayed on the

user's screen.

2.1.1.4.1 Start/Stop Module

The StarL~/StOp Module is used to define the starting and/or stopping

time framonitoring session.

0 Input - An input is received from the Monitor Setup

Module. A success/failure code is also received from

the monitor executive.

o Process - The start and/or stop time is validated for

clock times. If they are valid, a message is sent to

Fthe monitor executive. If the monitor executive

F ~~returns a success code, the measurement session is I

queued up. If a success code was not received, the

user must specify a different start time.

V 2-11

o Output -The message'to inform the monitor executive

when to start the monitor session, and any error texts L

sent to the user.

2.1.1.4.2 Filename Module

This module validaites a useria filename.

0 Inputs - The input text received from the user and a

success/failure code from the monitor executive.

0 Process - The filename is validated to assure that it

is in the format for the host system's file structure.

If theI user does not supply a name, a default name

will be used. This information is sent to the monitor

executive. It is also used by the Store directive.

0 Outputs -The message sent to the monitor executive to give

it the filename, and any error texts sent to the

user.

2.1.1.4.3 Collect Module

This module defines the period during which to collect data from the

microprocessor and the host's software monitor.

0 Inputs - This module receives its input from the

Monitor Setup Module and from the monitor executive.

0 Process - The input is checked to determine if it is

numeric. If so, the period of data collection is sent

to the monitor executive.

2-12

0 Outputs The message to the monitor executive,

containing the period of data collection, and the

error texts sent to the user.

2.1.1.5 Help Module

This module will give the user an explanation of any specified area of

measurement definition.

0 Inputs - The user will input a code through the User

Interaction Module.

0 Process - Using the code entered by the user, the Help

Module will extract a Help text from Its text areas.

It will then format the text for display on the user's

screen.

0 Output - The Help text the user has requested will be

displayed on their screen.

2.1.1.6 Measurement Manipulation Module

This module facilitates the storage and retrieval of defined

measurement sessions. The Delete, Store, Include, and List modules

are called by the module.

0 Inputs - The inputs to this module are from three

sources: the command the user has typed in, the

measurement session the user has defined, and the

existing measurement sessions.

0 Process -This module validates that the command

received from the user is correct. It then calls the

2-13

appropriate module, or displays an error text at the

user's terminal.

0 Outputs - Outputs from this module consist of error

texts and measurement files.

2.1.1.6.1. Delete Module

This module deletes the specified measurement file from the system.

0 Inputs - The input consists of a filename to bs

removed.

0 Process - The file specified is removed from the file

system. Should the filename not exist or the user not

have deletion privilege, the user will be informed by

an error message.

0 Outputs - An error message that will tell the user he

tried to delete a non-existent file or one that he

does not have deletion privileges to.

2.1.1.6.2 Store Module

This module is used to add a new measurement session file to the file

system.

0 Inputs - The filename of the new measurement session.

0 Process - The file system first checks to see if the

filename already exists. If so, it informs the user

to either e-4ete the filename or to supply a new

filename. .en the store module has opened a new

2-14

file, the measurement session is written into the

file. The file is then closed and it can now be used

for a measurement session.

0 Output - A new measurement file in the file system.

2.1.1.6.3 Include Nodule

This module is used to include a pre.iously defined measurement

session as part of the current measurement session.

o Inputs- The inputs to this module come from the User
Interaction module, and the filenatae the user

specified.

0 Process - The filename specified is opened. If the

file does not exist, an error text is displayed on the

user's terminal. If the file exists, the contents of

the file is read and added to the existing measurement

set. Any duplicate event or status nemes are flagged

but not added to the measurement set.

o Output - Any error texts caused by the Inclusion of a

previously defined measurement set.

2.1.1.6.4 List Module

This module has two options; to list the current measurement set, and

to list the measurement set specified by the user's input.

o Inputs - The user inputs a filename to be listed or

gives no input at all. If a filename has been

specified, the file is uset as input. Otherwise the

current measurement set is used.

2-15

0 Process -If a filename has been specified, the filej

is opened. If the file exists, it is read. The

Information stored in the file is translated into text

to show what measurements are being performed. Then

the file is closed. If the current. measurement set is i
being listed, it goes through the same translation

process to describe the measurements being taken.

0 Output - A list of measurements to be performed is

displayed on the user's screen. Error messages for

nonexistent files will also be displayed.

2.1.2 Compilation Process

The compiler takes a measurement session file defined by the user and

translates that into the data structure and files necessary to perform

the measurement session. This set of modules utilizes the outputsI. from the Definition set and predefined measurement templates. The

templates consist of the data structures for count/timer control and4

software measuremeýnt setup.

The compiler works in two steps, The first step consists of setting

up t~o measure the static measurements. This process consists of

building the data structurea necessary to obtain the information,

process the obtained data, reporting the data and allocating space for

the measurement in the microprocessor memory. The secund step is to

perform the above process on the dynamic measurements.

The Compile process modules fall into three groups, discussed in the

remainder of this section:

2-16

o Static Measurement Control

o Dynamic Measurements

0 kMemory Allocation

2.1.2.1 Static Measurement Control

These modules produce all the data structures needed to perform

hardware and software static measurements.

The software and hardware static measurement tables produced from a

user's measurement session definition and prefilled data tables for

the hardware and software static measurement are used by these

modules.

The software static measurement tables and the prefilled software

static measurement tables are read in, and the software module is

called and passed this information. The hardware static measurement

tables and the prefilled hardware static measurement tables are then

read in, and the hardware module is called and passed this
0

information. The PAM module is also called and passed this

information.

2.1.2.1.1 Hardware Module

This module modifies the prefilled hardware static measurement table

to reflect the request of the user.

o Inputs - This module utilizes the hardware static

measurement table and the standard prefilled hardware

static measurement table.

2-17

o Process - For each hardware measurement, this module

modifies the prefllled hardware static measurement

table producing the Hardware Configuration table. The

items modiflad are arm command, preload count, type of

processing to perform and the address to store the

processed data. This information Is also written to

the data description file.

o Outputs - A record in both the data description file

and the Hardware Configuration table.

2.1.2.1.2 PAN Control Module

This module builds the data structure to collect and process data from

the PAN.

o Inputs - An ASCII string containing device to measure

and options to measure.

o Process - The device name is checked with a table of

device names, address and measures. The PAM structure

is then loae~d with CSR's address, CSR bit codes, word

count register's address If a disk cylinder address

register's address and the cylinder address register's

configuration. Then for each option specified that

option field in the PAM structure is turned on.

0 Outputs - A data structure to control the measurements

peformed by the PAM.

2.1.2.1.3 Software Module I

This module creates the Time Sampled Software Manager Control table

that drives the Time Sampled Software Manager.

2-18

A I

Li

0 Inputs -The inputs to this module are the software

static measuremenst table and the pref illed sof tware

static measurement table.

0 Process -For each software measurement the prefilled

software static measurement table io modified to

gather the dota the user has requested. The

modifications are: the decision to measure or not, and

frequency of measurement.

0 Outputs - The Time Sampled Software Manager Control

table used by the Time Sampled Software Manager.

2.1.2.2 Dynamic Measurements

These modules translate a user's request for measurements into the

data tables necessary to collect, process, and report on the

measurements.

The ASCII tables produced by the Measurement Definition Package are

utilized by these msodules.

Tables that initialize RAM's, install interceptive monitors, process

the raw software info~rmat ion, and allow report generation are produced

by these modules.

2-19

Z.l.Z.2.l lHost Monitor Module

r!
This module builds a data table that tells the Interactive Monitoring

Manager which Interactive Monitoring module to install in the system.

o Inputs - Each "define" statement that the user used i:-

building the measurement session and the software

static measurement table is input to this module.

o Process - The software static measurement table is

interrogated for measurements that require an

interceptive monitor. For each one present in the

monitiring session, its entry in the Interceptive

Monitor Manager Control table is turned on.

o Outputs - An Interceptive Monitor Manager Control

table is produced.

2.1.2.2.2 Associative RA4 Setup Module

This module builds the table required to initialize the ARAM, DRAM and

CRAM.

o 1nputs - Tile text of define statements referencing

ARAMi, DRAM or CRAM.

0 Process - This module builds the RAM I'dbles. The

information in the ARAM and DRAM statements are: hit

to set, and address range to set it for. This

information is put into the ARAM and DRAM

Initialization. The CRAM is a bit different. The

user specifics which bits he wants Lo Lest that are

true, which bits to test that are false and which bits

2-20

are either condition. The bit to set is stored. Then

t the bits the user wants to be set are placed In a

cleared word that is stored in the CRAM Initialization

..table. Then the set bits are ended with a word that

has all'its bits set. Then this word is added to the

table entry.

o Outputs - The ARAM and DRAM Initialization and CRAM

Initialization tables that will cause the RAMs to be

loaded.

2.1.2.2.3 Microprocessor's Dynamic Measurement Table

This module translates the user's dynamic measurements into a series

of instructions that will perform them.

0 Input - All of the dynamic measurements that the user

created during measurement definition.

o Process - Each event name is ascigned a number and

status measurements a status bit. For each event or

status that performs a measurement, the compile

gathers all event(s) and status(a) that go into

building the status or event. These events and

statuses are translated into the instructions required

to perform them. Then for each elementary event, an

instruction list is produced. This list shows each

status or event affected by this event. When every

measurement has gone through the above process the

instruction lists are ordered and duplicates removed.

The order is as followed: set or clear status, process

measurements, perform Boolean logic, perform Boolean

logic that process measurements, create new events.

2-21

.4]
S, . .•.... ..• • I • •'' :.,• ••• - ': • • • •.......; 2: ; • • • .• =

This list of instructions becomes .the Event Processing

table. The address of the starting.•instruction is

stored in the Event Table. '

o Outputs - The output is a list cf instructions oLdered. ..

by event number.

2.1.2.2.4 EMT and Task Name Tables Module

This module builds a table that translates measured task names and

EMTs into their event numbers.
..

0 Inputs - The inputs are: task name and event number,

task name and Mask register bit setting, and EMT

number and event number.

0 Process - The input is broken into two categories:

EMTs and Task names. The EMT number is used-as an .
index into a table. The event number is stored at

that position in the table. , This creates the EMT

tconversion table. The Task name is used to search the

task name conversion table. If the task name is not th
in the table, it is added. The event number ;or Mask
register bit setting is added.

0 Outputs - A table that converts EMT numbers to event

numbers, and a table that converts task names into

event numbers and Mask register bit settings.

2.1.2.2.5 Data Description File Module

This module builds a file that describes each and every measurement

and where its data is stored in the microprocessor.

Si22

2-2---•~* .'.

o0 Inputs The measurement name, type of measurement

address the data is stored at and num'.er of elements.

o Process - The data received from every measurement is

formatted and written to the Data Description file.

o Outputs - A record in the Data Description file.

.212.3 moy,'AllocationModule

This module is responsible for allocation of data storage in the

micropro.cessor.

0 Inputs - The number of words of storage needed for ai

measurement.

0 Process - This module takes the current storage

address and sends it to the user. It then adds the

number of storage words required for a measurement to

the current storage address. This will be the nent

address returned. A

o Output - The address that the data will be. stored at.

2-23

L. i?

2.2 Host Processor. Microprocessor Coordination

2.2.i Objective

The objective o0 this software is to establish 'the communication and

functional relati'Oiship between the host processor and the

microprocessor. As illustrated in Section 3, the microprocessor

resides in Lhe midst, bf the iPPA hardware, and is responsible for

controlling much of this hardware. In turn, the microprocesser Is

controlled by commands from the host processor. This design insures

• that, ultimately, the user controls the monitor. Two types of

communications take place:
Uf

o Commvnications from the [lost Processor

o Communications from the Microprocessor

2.2.1.1 Communication from the Host Processor

V2.2.1.1.1 Measurement data from the Host

SThe host processor transmits measurement data collected by the

software probes and commands to initialize and control the

microprocessor - bascd hardware probes.I At measurement time, the events detected by the software monitor are

sent for time stamping, intermediate processing, and storage. This

will be discussed in more detail in Section 2.3.1.2.

2.2.1.1.2 Control/transfer commands from the Host

The microprocessor's operational software, as well as driving tables,

etc., must be loaded into the microprocescor memory prior to

measurement execution time. The actual format for communication of

botl' measurement data and control/transfer commands is quitr similar,

with the following distinctions:

2-24

0 Whereas the measurement data directly supports the

results to be produced for the output, the

control/transfer commands control the microprocessor.

o The measurement data must be serviced, and stored in a

minimum of time. The control/transfer commands have

some flexibility in execution time.

The control/transfer commands are, responsible for setting-up the

microprocessor for measurement detection, terminating the measurement

detection and transferring the intermediate results to the host

processor for report generation (refer to Section 2.2.4). 4

2.2.1.2 Communication from the Microprocessor

Communication from the microprocessor is accomplished via the device's

host interface registers (CSR and FIFO). Utilization of these
registers is discussed in 2.2.2 '.daow and in Section 3 - Hardware

Design. lf error conditions arise, error codes will be put in the ~
status bits of the CSR. Under normal conditions, the microprocessor
only communicates the status information to tile host. When commanded,

however, the microprocessor transmits data stored and collected during

measurement sessions. This data is stored on host perpherais for

later analysis and reporting.

Depending upon the enable bits of thle CSR, the microprocessor has two

forms of communication:

oI; Passive, by just setting the status bits of the CSR

0 Active, setting the status and generating an interrupt

at the host

2-25

The remainder of Section 2.2 will describe the design that supports

the host processor/microprocessor communication.

2.2.2 Host Processor/M~icroprocessor Interface

From the viewpoint of the host, communication with the microprocessor

is performed in a manner similar to any standard I/0 device. The

device control and data registers can be accessed through the

peripheral page and consist of:

o A CSR Command and Status Register (CSR)

0 A 16 bit mask register (MR).

o A 16 bit data buffer register (DBR).

2.2.2.1 The CSR

This register is the main means of passing control/status information

between the host processor and the microprocessor. Status as well as

error conditions -from the microprocessor are available to the hostA

processor. Also, interrupts can be generated at each processor by

setting certain bits in this register.

To send a command from the host to the microprocessor, the host

processor places a code in the CSR command field and sets the bit (DEC

standard bit 0) of the CSR. This action generates an interrupt at the

microprocessor. The microprocessor responds by reading the CSR, and

determining from the command field what action has been requested.

Setting the "GO" bit clears the "DONE" bit 'in the CSR. The

microprocessor read of the CSR clears the "GO" bit.

Most of the communications to the host processor are in response to a

previously received command.

2-26

In response to a host processor command, the microprocessor Will

usually set a code in the status field representing the microprocessor

status. Depending upon the circumstances, the done bit, the error

bit, (or no bits) will be set. If it is desirable to interrupt the

host processor on one or more of these conditions, a host' interrupt

request may be generated when the interrupt enable is set.

Detail of CSR bit assignments are provided in Table 3-3.

2.2.2.2 The Mask Register

The mask register contents are used to directly gate (AND) the output

Of the IPPA's associative RAM's. In this way, each distinct output of

the event-detecting RAM may be enabled/disabled by setting/clearing a

corresponding bit. The set assignments of the MR to the associative

RAM's are:

The MR is directly controlled by the host processor.

2.2.2.3 The DISR

The DBR is the major bidirectional data path for host/microprocessor

data transfer. it is a 16 bit wide "port" accesued via a single

address on the UNIBUS external page.

L'

To facilitate fast i/o without the added hardware necessary for DMA

capabilities, a 128 word FIFO, resident on the microprocessor board,

is accessed via the DBR. The use of the FIFO releases the host

processor routine from having to check after each word to ensure the

microprocessor has succeeded in keeping up to the programmed 1/0 pace.

Also, it avoids the alternate method of generating an interrupt after

each word has been transferred.

2-27

kh,1

Functionally, the FIFO will be described in the hardware section.1

Here it is sufficient that the designed 1.4 user transfer rate is

capable of keeping pace with the host processor's programmed 1/0.

Transfer can be bidirectional under microprocessor control, and

appears, from a software point, to be a single word buffer. .
Transparent to the user, each read or write is automatically stored in

the buffer.

2.2.3 HostCommands to the Microprocessor

The two major forms of commands from the host processor areIcontrol/transfer commands and measurement data. All command
structures are implemented in software/firmware on the microprocessor

and are therefore amenable to change, should it be necessary.

2.2.3.1 Control/Transfer Commands

These commands are issued by the host processor, via user interaction, -

to control the microprocessor and hardware portion of the monitor.1

This concept allows flexibility in monitor usage, the things to

measure, as well as the times to start, stop, and return to user

control. Each CSR command can be qualified by a word inthe DIR to

extend the initial 16 commands, when necessary. The (CSR)

control/transfer commands will include the following:

0 Reset command - This command is used to clear portions

of memory, and also to reset counters and timers. To

allow flexibility in clearing certain portions of

memory, the reset command will be qualified to

include:

2-28

A- - reset all memoryj

- reset data tables

- reset control tables

- reset PAM instructions

aWRITE (Down-Line Load) - This command is used to

transfer a group of 16 bit words from the host

processor to the microprocessor. These words can be

microprocessor instructions, data, con~trol tables,

etc. The WR1TE command will be qualified to include:1* - down-line load executable instructions

- down-line load control tables
-down-line PAM instructions

-down-line load ARAM, CRAM, DRAM values

o Start monitor - After all the information is loaded

into memory necessary to complete the measurement

requirement, the start monitor command is given. This

PAM, and Unibus INTR detection circuitry. This would

also include any synchronization to wall clock time

that is required.

0 Stop monitor -The stop, monitor command, signals a

termination of data collection. All the

timers/counters are disarmed, the PAM, and INTR

circuitry are disabled. Basically, any devices that

F were enabled tn the start command will be disabled in

the stop monitor command- this to insure a uniform

measurement. There could still be information in the

measurement queue, the microprocessor would be allowed

to run in order to empty the queue and complete post

collection processing. Also, the counters/timers

2-29

could contain information (any value less than the

overflow value) which would be accessed and stored in

memory.

o READ (Upline Load) - This command can transfer any or

all of memory, (as well as PAM memory) to the host

processor. In many cases, this command would merely

be used to gather the results of the monitor session.

The different kinds of information that could be

transferred are:

- upline-load data

- upline-load error tables

- upline-load all of memory

(memory dump)

2-30

2.2-3.2 Measurement Data

This particular command is very similar to control/transfer commands.

Both use the CSR to initiate a microprocessor interrupt service

routine. The unique types of measurement data are determined (if

necessary) by codes placed in the nBR (data buffer register).

2.2.4 Support Routines I
Host processor/microprocessor communications cannot be discussed

without understanding the environment that will exist within the

microprocessor. As with most processor units, the instructions to be

performed must be in memory before execution begins. Since the

host-microprocessor communication is the only means of transfer

(including instructions), the microprocessor must be a "self-boot"

system, requiring no operator intervention. Therefore, svme routines

must exist in non-volatile memory (ROM). At a minimum the following

routines must reside in aOM.

o Initialization procedures - Among other things, it

provides the mechanism for host-microprocessor

communication

o Down-line load procedures - provides the means to

accept both data and instructions from the host

2.2.4.1 Initialization

The initialization procedure will be the first routine to be executed

each time power is applied to the system, by placing a 4-word program

status at location UUOU (SEGMEN! 0 OFFSET 0). Since the

initialization routine is the first routine invoked, it must insure

that a means of communication is developed with the host processor.

The initialization procedure will perform the following:

2-31

0 Determine if the interface lines are up and

accessible. These would include the tjnibus interface,

the maintenance interface and the front panel

interface.

0 Make appropriate status checks of the microprocessor
system

0 If the power-up does not disarm all counters/timers

and PAM, then provide the means to disarm them

0 Develop an initial MIISR Jump Table. The development

of an interrupt is a hardware function, under the

control of the "interrupt controller". When an

interrupt actually occurs the address of the M4ISR to

be initiated is found in a specific location. These

I -cations must be defined with an address before an

interrupt occurs. (This MISR jump table could exist

in ROA, but then would not be altered under software

control.) The initialization routine will develop

these addresses in RAN (read and write memory), where

many of these addresses would point back to routines

in ROM. Therefore, iL can be seen that these

addresses could be altered later to point to new or

differeri- modules. Some routines that will be

resident in RAM will not yet exist. These addresses

will point to a general error routine in ROM.

o Set the FIFO direction - As alluded to before, the

FIFO can transfer information in both directions. One

of the initial multi-word transfers is a down-line

load. In order to accept this initial transfer, the

FIFO must be set to accept data from the host

processor. The FIFO is software controlled by the

2-324

microprocessor; therefore the direction. as well as
FIFO control registers, ore the microprocessor's

responsibility (refer to the hardware distussion for a

more detailed discussion of the FIFO).

a Initialize the clock - The system clock used by the

microprocessor for "time stamping" events must be

running when the measurement session begins. The
start monitor command will synchronize any time of day

relationships. This procedure will insure the system

clock is working. i

o Enable the "Interrupt Controller" - The interrupt

controller is responsible for determining the highest

priority among contending Interrupt requests. When an

interrupt occurs, a vector associated with the

interrupt is sent. This vector is stored within the

interrupt controller, and is developed initially under

microprocessor control. Therefore, during

initialization the microprocessor must provide these

vectors to the interrupt controller. In the Initial3

state some of these vectors are not known. They must

be added at a later time (after down-line load).

2.2.4.2 Down-line Load

This routine must reside in non-volatile memory and will be invoked by

a host processor command.

2.2.4.3 Error Routines

Several routines that will service host control commands will reside

in non-volatile memory. The error routines involved with the boot

process must also reside in non-volatile memory. Refer to the

appropriate tables. In addition, certain modules n~eeded to support

the design will be discussed. Refer to Figure 2-1.

2-33

Itardw.are. section for complete list of error types. The two types of

error routines are:

0 Software errors - These types of errors include

unacceptable, unexecutable host commands;

microprocessor software errors; communication faults.

Basically, this would include errors or traps that

cannot be resolved.

0 Hardware errors - When certain conditions in theI hardware occur, a fatal error condition could exist.

In this event the hardware would interrupt the
microprocessor, invoking the hardware error routine.

2.3 MEASUREMENT

The measurement data sources are the ho3t software probes and hardware

detection. Both will be discussed within this section in terms of the

microprocessor software that is responsible for the data's

intermediate processing, time stamping and storage.

This section will be concerned with the microprocessor's

responsibilities in relation to the measurement data. Section 2.3.3

will give a more detailed discussion on how the software probes detect

certain events. The hardware detection circuitry itself is described

in Sections 3 and 4.

The microprocessor software uses structured concepts, and revolves

around two (2) major areas of responsibility: the microprocessor

* interrupt service modules (MISR) which are designed to store the data

in a circular queue and which use a minimum of processing tine; and

the microprocessor post-processing module, which takes the data off

the queue, performs intermediate processing, and stores it in

the microprocessor storage area.

2-34

Common 'ubroutines

MISR Routines

Event Processing Table

Event Table (Dequeue Jump Table)

Hardware Configuration/Control Table

• ~(RAM)

Program

Interrupt and Trap Vectors Status

(MISR Jump Table) Area

Upline-Load (Read)

(ROM) Downline-Load (Write)

Hardware Error Routine

Software Error Routine J
Initialization Routine (Bootstrap)

Figure 2-1 Microprocessor Memory Map

2-35

L - - i

2.3.1 MISR Processing

Viewed from the microprocessor, there are several "devices" requiring

service under interrupt control. A priority scheme has been developed
-' which allows those "devices" with the greatest need:.;for service to be

handled first. MISR processing will be concerned with:

0 Interrupts from the host Unibus interface

o Command instructions from host processor

o PAM and VECR function requests

o CRAM outputs - (via dedicated counters)

iA
0 Counter/Timer overflows

NOTE: Some ARAM, DRAMS outputs are routed to the CRAM,

therefore, these outputs will be discussed in relation

to the CRAM.

Each "device" requiring service from the microprocessor generates an

interrupt request. The "interrupt controller" determines the highest

priority among contending requests and generates a vectored interrupt

to the microprocessor. In this way, a unique microprocessor

interrupt-service module (MISR) for each device can be initiated.

Each MISR is designed to use a minimum of execution time, to insure

contending requests can be serviced quickly with no loss of data.

Also, to miminize context switching time, each MISR will only require

the use of a minimum number of registers. The minimum requirements

for each MISR are:

2-36

o Disable interrupts

"o Indicate priority level (this goes to the interrupt

controller)

o Save previous data (context switch)

o Get the Data

o Store the data

Enable interrupts ,. .

Return from interrupt (grnd'restor* .concext)

The MISR will be responsible for saving enough information -'to allow

follow-on processing to evaluate-whst,.acpually took place. 2!n many

cases this data will be stored ir a circular queue,, ,•ln." those cases

where data is stored in the queue, a cod& is,'developed idicating to

the post-processor what the data sourc.e was,

The MISR routines will be dedicated to the following measurement

devices:

Highest priov'ity

Unibus INTR (VECR)

Command Instructions from Host (CSR)

System Clock

PAM Request

CRA Counter Outputs

STC Counter/Timer Overflows

Lowest priority

2-37
~ I

Additional details the assignment of priorities is presented in figure

3-7.

The Z"80O0 micrbprocessor can accept up to 256 vectored interrupts.

The LPPA design will incorporate 40 unique vectored locations. As

each interrupt request is developed by the device requiring service,

the interrupt controller will compare the priority of the request with

the software priority currently in control. If the requesting device

has a higher priority, the interrupt controller will generate an

interrupt to the microprocessor.

The interrupt, along with a vector on the address line, will store the

previous PC and PSW (flags and status word) on the system stack, and

gcet the new PC from the program status area. This effectively

transfers control to the appropriate MISR. The MISR is responsible

for saviag the contents of any register that it will be using, as well

as gathering and storing the data the device has provided.

Each system timer/counter (STC) will have at least 1 MISR to service

its overflow.' Some STC'a will have different MISRs for different

functicns. In these cases, the vector for that STC will be loaded to

point ta a particular MISR.

Each of the MISR groups will be discussed in more detail in the

followlugi sibsections:

o LUNIBUS INTR MISR

0 Host Command MISR

o PAM MISR

o CRAM (ARAM, DRAM) MISR

0 Counter/Timer MISRs

2-38

I!

• 3.1.I mUnibus INTR MISR

An interrupt on the Unibus represents a change in state on the PDP-11

system. The times these INTR signals occur help define the state of I
the system in relation to both hardware and software conditions.

Dedicated IPPA circuitry will monitor the INTR signal; when it detects

an interrupt it takes the vector associated with the INTR and places

it in a lb-word silo. The circuitry then generates an interrupt

request to the microprocessor. After the INTR MISR is invoked, it

does the following:

o Inhibit interrupts

o Save registers (context switch)

o Get time word

0 Get vector from silo

o Store vector on queue

o Store time word on queue

o Restore registers

o Enable interrupts

o Return from interrupt

Data will be stored on the queue by a common qu !ue manager routine

which controls the pointers, queue size, etc.

2.3.1.2 Host Command MISR

All commands from the host processor invoke the host command MISR.

The MISR reads the microprocessor's CSR and determines the type of

command. The two major types are:

0 Control/transfer commands - These commands control the

usage of the monitor.

2-39

o Measurement data - This command indicates that some

detected measurement data is being transferred from

the host processor. This data must be stored on the

circular queue for later processing. If it is a

multi-word transfer, the first word of the transfer

will indicate the number of words to be transferred

via the FIFO.

2.3.1.3 PAM MISR

The PAM (peripheral activity module) was developed to monitor device

usage; it is an alternative to attaching discrete probes to each

device and controller. Because PDP-11 architecture allows software

control through access to the peripheral page, device-control signals

occur on the Unibus in the form of:

o A unique 18 bit Unibus address describing a particular

device register.

o lb bits of data representing the contents of the

device register.

Therefere, for the PAM to monitor Unibus activity without the use of

discrete probes, it must be sophisticated enough to accomplish the

following:

0 Actively monitor the AUO-Al7 lines, on the Unibus

interface in search of from 1 to 4 unique addresses.*

o Upon an address match, transfer the 16 bits of data

(DUO-D15 the device register contents) to the

microprocessor for time stamping and storage.

2-40

* This is restrained by the speed of the PAM's microprocessor.

The relatively fast Unibus transfer rate (approximately I usec),

limits the number of compares the PAM can make. It is not

unreasonable to restrict the user to monitoring one device, per PAM,

and providing the following possible measurements in relation to this

device:

o NPR's/controller - This measurement is restricted to

devices with DMA capabilities.

o Number and role of interrupt by controller and unit

o Service time per transfer

0 Disk head position - Obviously restricted to disk

units.

0 % peripheral controller busy - For all Unibus devices

o X MBC busy - for all Hassbus devices

To support these Unibus measurements, at least three registers would

have to be monitored; they are:

o The device CSR - The contents of this register will

indicate the status of the device; the service, if

any, that is required; and error conditions.

o The word count register (DMA devices only) - This

register is loaded with the number of words an NPR

device is to transfer. By monitoring this register a

good indication of the total of number of transfers,

by device, can be accomplished.

2-41

So

0 The current head position register (disks only) -This

register provides the head position per drive, and inI
relation to previous head position, it could provide

the total number of implied seeks accomplished.

NOTE: In some cases, the device may have 1 or more

registers, in addition to these mentioned, that mayI

have to be monitored. This will depend upon the

1* transer ~oe s;t;:;::;ioi and device types.

ThePA, uona mtc, wllgenerate an interrupt request and will

tranferat eas 2 ord tothe microprocessor:

0 oerepresenting the PAM function and a codeI

reprseningthe register type (or the lower 11 bits

of register address)I

0 The contents of the device register

The PAMI MISR module will be invoked by a vectored interrupt,

priorities permitting. This MISR at a minimum will:I

0 Disable interrupts

0 Context switch

0 Get a time word

0 Put a code representing a PAM function on the queue

(this word would include the register type)

2-42

* o Put the data on the queue (register contents)

0 Put the time word on the queue

0 Restore registers

0 Return

2.3.1.4 CRAM (ARAM, DRAM)

The CRAM (combinational RAM) is capable of developing some very

complex measurements. By inputting some of the ARAM (address RAM) and

DRAM (data RAM) outputs, as well as some dedicated hardware lines,

several unique combinations of event/event times' can be detected. TheI 1b inputs are:

1. CPU Mode (kernal)

2. CPU Mode (supervisor)

3. CPU Mode (user)

4. CPU Priority Level 7

5. CPU Priority Level G

6. CPUJ Priority Level 5

7. CPU Priority Level 4

8. 1/0 Indicator (direction of transfer)

1.OR of MBC and NPR transfer

1.4.

15. (DRAM Outputs

2-43

At leaist 4 of the outputs will be sent to 4 dedicated timer/counters.

The design will allow either aI count of a particular event/combination

of events, or a time duration dictated by start/stop events provided

by a pair of CRAM output lines.

2.3.1.5~ Counter/Timer MISRa

The majority of counter/timers will only require updating a software

count of the number of times it has overflowed. In light of this, and

the rather slow nature of the overflow rate (a typical rate of 65

millisec), it would seem reasonable to perform the processing within .
the MISR. This will save on queue size, as well as execution time.

Also, as each counter/timer will have a unique vector associated with

it, there is no need for polling to determine the particular

counter/or timer that overflowed.

The priority of any particular counter/timer is based upon its

overflow rate. This rate is dependent upon the input frequency (worst

* case) and the probability of a continuous input. The 40 counters and

timers have been prioritized using this criteria. Table 3-7 gives a

list of these counters/timers and estimated priority level.

At initialization time each counter/timer is disarmed. During set-up

time those counters/timers to be used will be configured with the

necessary status information, and upon a start command from the host,

the microprocessor will arm the counter/timers. When a counter/timer

overflows, a particular MISR will be invoked. This MISR will perform

the following:

0 Inhibit Interrupts

0 Context switch

2-44

o Establish its softuare priority level

o Get a time word (if necessary)

0 Update a sonftware location (dictated by a driving

table)

o Enable interrupts

o Continue processing if needed (can be interrupted at

this point)

• (Do Histogram, etc.)

o Restore register contents

o Return from interrupt

All the counter/timers will store their overflow count in a continuous

block of memory. This block of memory would be one of the data tables

to be upline-loaded after the measurement is completed.

i24

2-45

F

2.3.2 Microprocessor Post-Processing

To enable the MISR's to respond quickly to 3ervice requests, each MISR

does a minimum of processing. This places the burden of processing on

the post-processing routine. The processes of time correlation, count

plus time update, determination of complex events is done by the

post-processing routines.

Basically, the post-processors will be executing at the lowest

priority level (interrupts enabled) and will be "dequeing" the data

placed there by the various MISR's.

The queing scheme envisioned, because of the order of events, has a

direct relationship to identifying events. It may, in suitle cases,

be more efficient to directly update tables from the MISR.

This queue will contain all the host data, the PAM data, Unibus INTR

data, as well as certain outputs of the CRAM counters.

At the "start monitor" command from the host, the post-processing

routine will be invoked. The microprocessor post-processing is made

up of:

Routines Tables

Dequeue Manager Event Table (jump table to a dequeue routine)

Dequeue Routines Configuration/Control Table (tells the routine

what to do)

Common Subroutines

2.3.2.1 Dequeue Manager

The dequeue manager is responsible for determining which dequeue

2-46

L _I_ _

I
routine to Invoke. It will take the first word off the queue, use it j
in the "Jump" table to transfer control to a particular dequsue

routine. The dequeue manager must also maintat. the head pointers, i
queue alse and so on.

2.3.2.2 Dequeue Routines

The dequeue routines have the responsibility to take the information

from the queue, perform some intermediate processing, and store the

results in reserved memory locations. The dequeue routines are

grouped by data sources and are further defined, if necessary, by the

information itself. Refer to Figure 2-3 for the queue data sources.

The code field, indicating the source, was developed by the particular

MISR to provide a means of identifying the dequeue routine required to

process the data. Each of the dequeue modules will be discussed with

its related data source.

o Unibus INTR Dequeue Module

0 Host Dequeue Module

0 PAM Dequeue Module

o CRAM Dequeue Module

o Time Dequeue Module

0 Terminals Processor

2.3.2.2.1 Unibus INTR Dequeue Module

Since a Unibus INTR indicates a change of state in the host processor,

several measurements are dependent upon this information. For

instance:

2-47

iI

o Any task time measurements would be suspinded at the

occurrence of an INTR. This time would be provided by

the time word associated with the INTR.

0 A total number of INTRs by device would be determined,

and the various totals would be stored in memory. The

device determination would be accomplished by

comparing the vector to the device.

The actual module would be controlled by a driving table. The vector

would be compared to a list of vectors, (as found in the peripheral

page); then the count for the number of INTRe of that device is

updated. Also the time for each INTR is put in a stack. This way the

various dequeue routines can access this inform tion.

A

2.3.2.2.2 Host Dequeue Module

Basically for each measurement detection, there is a dequeue routine.

Since the host M1SR merely stored the information on the queue, the

particular dequeue routine is determined from the first woro of the

data. (This was encoded by the software monitor.)

Each dequeue module is dependent upon the type of data encountered.

The code is provided by the host software detection. The particulax

dequeue module, controlled by a unique driving table, will process the

data and store it in a reserved memory location.

The actual processing could be as simple as taking the difference in

time between two events and adding that to a total time stored in

memory.

2-48

2.3-.22.3 PAM Degueue Nodules

Each dcvice monitored could have one or more registers associated with

it, and since each device usually has a unique register layout, tr

would be most convenieint to have a dequeue module for each device.

The cietected Unibus address would correspond to a particular device.

This would provide a means to identify the unique layout of a device

register, and to determine the event(s) by comparing specific bits of

the register.

2.3.2.2.4 CRAM Dequeue Modules

At least four of the outputs of LheCRAM will be tied to dedicated

counters. These counters can define a time span, per a pair of

counters, or provide a total count of events. Each counter will have

a dequeue routine.

2.3.2.2.5 Time Dequeue Module

This dequeue module supports the (STC) System Clock used for time

stamping. To minimize MISR execution time, a single time word is
accessed. In order tL, distinguish between time words of a long
duration, every timer overflow is put on the queue. This defines the

time words in relation to the sequence of events.

When th13 dequeue module is invoked it updates a known memory

location, representing the number ot times the STC overflowed. In

this way, each dequeue module can relate time words of several

different events.

2.3.2.2.6 Terminate Processing Module

This dequeue module is invoked at the conclusion of post-processing.

2-49

[..r j,: ••r'• I a 1:! • • ... :;• [.-• .. .:2.. • •. 'N -J-.-

When a stop monitor command was issued, a code was put at the end of

the queue. This allowed post-processing to continue, even though all

detection was suspended. This module then performs any clean-up or

concluding processing required, and notifies the host processor of the

post-processing status.

2.3.3 Host Software

This set of modules controls the collection of Host measurements i nd

their transmission to the microprocessor. The input to this module

set is in the form of the systems tables lists and parameters of

routines. The monitoring of the system falls into two categories:

time sampling, and interceptive sampling. The derivation of each

measurement renuires examining processing overhead in-curred for the

measurement and how dynamic or static the measurement is.. The output

from this set of modules is a few word-transfers to the

microprocessor.

The modules in this set are subcategorized and discussed as follows:
L!

o Time Sampled Software Manager

o Interceptive Monitoring N~anager

o Monitor Executive

0 Trace Trap Monitor

S0 lnstruction Count Mcdule

2.3.3.1 Time Sampled Software Manager

This module controls a set of modules which perform measurement or

2-50

functions that are best serviced by periodic operation. The modules

called by this module include the UMR Module, PUD Module, System

Module, and Collection Module.

o Inputs - The Time Sampled Software Manager Control

table, indicating which of the modules to execute and

how often to execute them.

o Process - A length of time is computed until the next

measurement(s) and or function(s) will be performed.

A mark time directive is issued for this period. When

the mark time directive expires, the measurement(s)

and/or function(s) are resumed. This process

continues until the monitoriag period is over with.

0 Outputs - None.

2.3.3.1.1 UMR Module

This module counts the number of Unibus Mappi .g registers in use.

0 Inputs - None.

o Process -This routine suspends itself, and is resumed

by the Time Sampled Software Manager. When resumed it

counts the number of UMRs in use, and calls the

communications routine to send the data to the

microprocessor. This process is repeated for the

duration of the measurement session.

0 Outputs - The number of UMRs in use.

2-51
Ii

2.3.3.1.2 PUD Module

This module collects data on the devices configured in the system,

their on-line or off-line status, and their logged-on status.

0 Inputs -None.

o Proess -This module is suspended. Whn tcTe

Sampled Software Manager resumes this routine, it

scans the Physical Unit Directory. Each device type

and its units are examined and data is collected on

it. It sends this data to the Communications routine

to send It to the microprocessor. This process is

repeated until the measurement session ends.

0 Outputs -The data the PUD Module has collected.

2.3.3.1.3 System Hc'dule

This module collects a count of the number of active tasks in memory

and the number of activation of tasks since the last sample.

o Inputs- None.

0 Process -The system module suspends itself. When a

resume is issued by the Time Sampled Software Manager

this routine scans the Active task list. It counts

each task in the list that can become active. Then it

extracts the activation count from the ATL roujtine.

It zeros the activbtion count. Then the data is sent

to the communications routine to be sent to the

microprocessor.

0 Outputs - The count of active task and the number of

task executions.I

2-52

r ____

2.3.3.1.4 Collection Module

This module collects all the data stored in the microprocessor's

memory.

o Inputs -The size of the data stored in the -

microprocessor and the filename to store the

information in.

0Process -This module suspends itself. When resumed

by the Time Sampled Software Manager it opens the
passed filename. It then queues "reads" to the

microprocessor through its handler. When the readsIthave been received, this routine appends the
information to the opened file. When all the data has

been read, in an "End of Read" QIO is sent to the MC

handler and the file is closed. This process is

repeated until the end of a monitoring session.

o Outputs -Tae QIO commands to the microprocessor's

handler and the file wiritten to disk.

2.3.3.2 Interceptive Monitoring MAnaaer

These modules make best use of obtaining the information as it occurs.

This is accomplished by modifying portions of the executive code to 4

obtain the data.

The following modules are called by this module: Node Monitor, Task

Activation Monitor, EMT Monitor, Directive End Monitor, Trap Monitor,

IOT Monitor, TRAP4 Monitor, Memory Utilization Monitor, Task Execution

Monitor, Checkpointing Monitor.

2-53

o inputs - The Interceptive Monitoring Manager Control

table, indicating measurements to perform, is received

from the Monitor Executive.

0 Process - Each entry in the table contains the

information required to patch the executive, perform

the data collection subroutine and restore the system

to its original form. This module performs each patch

required by the measurement session. At the

conclusion of the measurement session this module

restores the executive to its original state.

o Outputs - A success/failure message to the Monitor

Executive.

2.3.3.2.1 Node Monitor

This module records all allocations and deallocations of nodes in the

host environment.

0 Inputs - Its inputs are the same as the inputs to the F
system's node allocation and deallocation module.

0 Process - After the Interceptive Monitoring Manager

has modified the executive, every request for nodes or

returning of nodes to the system goes through the node

monitor. It copies the information passed to these

routines and sends that information to the

communications routine.

0 Outputs - The number of nodes allocated or deallocated

is given to the communication routine.

2-54

2.3.3.2.2 Task Activation Monitor

This module is used to inform the microprocessor of task activation.

o Inputs - A table of task names, event number and mask

register bit setting for the task.

o Process -After the interceptive Monitoring Manager has

installed this routine, task activations are known.

This module is added to the end of the active task

list scanner. The next active task is compared

against the table of task names, event numbers and

mask register setting. If a match is found the mask

register is written with the contents for that task

name. Then the event number is sent to the

communications routine. If no match is found, this

routine sends a non-monitored task code to the

communications ,'outine to be sent to the

microprocessor.

o Outputs - The mask register bit setting and Lhe event

number indicating a monitored task is nominated or

not.

2.3.3.2.3 EMT Monitor

This module monitors EMT execution.

o Inputs - This routine uses the ElT Conversion Table

and the event number associated with it.

o Process - When the Interceptive Monitoring Manager has

installed this monitor the issuance of every EMT is

2-55

detected. It compares the EMT to the EMT conversion

table and sends its corresponding event number to the

communications routine.

o Outputs -The event number associated with the EMT.

2.3.3.2.4 Directive End Monitor

This module is used to time EMT execution.

o Inputs -None.

o Process -After being installed by the Interceptive

Monitoring Manager the end of each EMT is known. The

end of EMT directive event number is sent to the

Communications routine.

0 Outputs -The event number of end EMT execution.

2.3.3.2.5 TjRe Monitor

This module monitors the trap instruction for the purpose ofI monitoring task times.

0 Inputs -None

0 Process - After installation of this module by the

Interceptive Monitoring it will send the trap event

number to the communications module

0 Outputs - The event number associated witli e trap

instruction.

:1 2-56

I I
2.3.3.2.6 TOT Monitor

This module monitors the IOT instruction for the purpose of monitoring

task times.

o Inputs - None.

0 Process - After installation of this module by the

lnterceptive Monitoring it will send the trap event

number to the communications module.

o Outputs - The even number associated with the trap

instruction.

2.3.3.2.7 Trap4 Monitor

This module monitors the Trap4 which is a collection of CPU error

conditions. Slave faultb, memory out of bounds, odd address, yellow

and red stack violatioqs are all indicated through *%e trap.

0 Inputs - None.

o Process - After the lnterceptive Monitoring Manager

has installed this module, it will receive all Trap4

occurrences. This module will read the CPU Error

Regi-ter. The register contents and a Trap4 event

number will be passed to the communications module.

0 Outputs - The CPU error register and the Trap4 event

number.

2-57

2.3.3.2.8 Memory Utilization Monitor

This module monitors the allocation and deallocation of memory. This

occurs when a task is being installed, checkpointed or terminated.

o Input - None.

o Process - After the Memory 'Utilization Monitor has

been installed by the Interceptive Monitoring Manager,

all allocation/deallocation are measured. This module

collects the following information: allocation or

deallocation, system or user controlled partition,

partition name and the number of 32 word blocks

allocated or deallocated. This information is passed

to the Communication routine.

o Output - The allocation/deallocation of memory,

partition name, user or system controlled partition

and the amount of memory requested.

2.3.3.2.9 Task Execution Monitor

This module detects the return of execution to the previously

executing task or to another task.

0 Inputs - None.

o Process - After the Task Execution Monitor is patched

into the Interactive Monitoring Manager, every time

the executive tries to return to a task the outcome is

known to this routine. The outcome falls into two

classes. The first is that control is returu~ing to

the task that last had control of the CFU. The other

case is when control is returned to someone other than

the last user of the CPU. Each case has An event

2-58

L __i

number and this iu passed to the communications module

o Outputs - The event number for a return to previous

task or return to new task.

2.3.3.2.1U Checkpointing Monitor

This module receives information or tasks being checkpointed and

rolled in.

0 Inputs - The information passed to the checkpointing

and rolling in routines.

0 Process - After the Checkpointing Hcnitor has been

installed by the Interceptive Monitoring Manager all

roll-outs and roll-ins of tasks will be recorded. The

information collected are the following: roll-in or

out, partition name and size of task brought in or

sent out. This information and the event number are

passed to the communications module.

o Outputs - The information collected on the rolling in

and out of tasks.

2.3.3.3 Monitor Executive

This module controls the flow of information and execution to the

parts of the monitor.

o Inputs - A user command to run a measurement session

from the terminal or the start of measurement session

that was defined in the definition software. The

success/failure codes received from the dnwn-line

2-59

loader, Time Sampled Software Manager and Interceptive I
Monitoring Manager.

0 Process - This module first starts the down-line

loader. It then passes it to the filename for the

current session. It then waits for information on the

success or failure of the down-line load. If it was a

failure, the user is informed and the process is

terminated. If successful, the controlling table for

the time sampled software is read and passed to the

Time Sampled Software %tanager. The Monitor executive

then waits for the Tine Sampled Software Manager's

reply. If successful, the Monitor Executive waits for

the measurement session to end normally (defined stop

time) or the user to terminate it. At this time, the

Interceptive Monitoring Han.ager is informed to restore

the system to normal. The collection. routine is run

and all other software is stopped.j

0 Output - All commands and information sent to the

down-line loader, Time Sampled Software Manager and

the Interceptive Monitoring Manager.

2.3.3.4 Trace Trap Monitoring

This module is not run during a monitoring session.

0 inputs - None.

0 Process - This module installs itself into the

operating system. It counts the number of times the

trace trap has been executed. On user requests to

this program it will print out a count of the number

of trace traps executed.

2-60

0 Ouput Thecout ofthenumbr o trae taps

0 OItputs -The count of the tumbrso tratcel trape.t

2.33.5instructions Countet

Thi 0 odlisProcieds fo debmouggnlrgre .I will moiytexercue thep

proramoneinsrutonraat arcso sttime anrd kee track ofe Tintruetio.

thInputsnithred name ofsthed itas tha wil haoes itsA

udtsisinstructions counted. rtrs otrlt

th proes m. If Thsnodul witllmodif thenoma trace trap

programs prodesso witatus tordc toravetep.itst

o Outputs -The output will consist of a count of the

instructions executed.

2-61

2.4. Measurement Reportina

This collection of modules displays all the collected data on the

user's screen or the system's print device. Appropriate modules read
the collected data file, the data description file and the static
measurement table. All static measurements aepitdi hi

report formats, followed by the dynamic measurements..

The modules are discussed below in two groups:

[Static Measurement Reports

0 Dynamic Measurement Reports

2.4.1 Static Measurement Reports Module

This mnaule is used to report the static measurements. These

measurements remain the same (if chosen) for every run of the monitor.

The fol lowing report modules are called by this module as required:

Node Report, System Report, Unibus Report, Fast Bus Report, Mass Bus

Report, PUID Report, CPU Report, Fault Report.

o Inputs - This module reads the static measurement

table, the data description file and the collected

data file.

0 Process - The static measurement table is read. For

each measurement taken, the description file is

searched for its entry. When found the correct

subroutine is invoked and the report for that

measurement is printed.

0 Outputs -None.

2-62

2.4.1.1 Node Report Module

This module will print the total number of nodes used by the system at

each sampling period.

o Inputs - The location and length of the node data in

the collected data file is passed from the Static

Reports' Module.

I a Process - The node data stored in the' collected data

file is read in. A node report heading is produced.I. The sample times and the node counts are printed for
each sample.

0 Outputs - The report containing the sample counts and

the sampling times is the output.

2.4.1.2 Syte Report Module

This module prints a report on system performance. '

0 Inputs - The lucation of the system data storage area

in the collected data file and the number of entries

in the system data storage area.

0 Process - This module prints a heading for the system

report. Then for each sample, the time of the sample

and the data collected will be printed. The data

consists of the number of active tasks in memory, the

task request rate and the number of memory block (32

wor'is to a block) - seconds that are available on the

system.

0 Outputs -The report on the system performance.I

2-63

aAI

2.4.1-, Unibus Report Module

This module produces a report on t.he Unibus. The data contained in

the report are Unibus occupancy, Non-Processor Request (NPR)

contention, Bus Request (BR) contention at each level, Unibus Mapping

Register (UNR) utilization and transfer per second.

o Inputs - The inputs to the Unibus module are the

address of the Unibus data in the collected data file.

o Process - The Unibus Report modvie prints a heading.

The data for the Unibus measuremenLs are printed with

a title to describe what measurement it is.

0 Outputs - The Unibus Report is generated as output.

2.4.1.4 Fast Bus Report Module

This report will only be produced on a PDP 11/70. This is because the

PDP 11/45 does not have cache memory. The data contained in this A

report are cache hit rates, cache/memory transfers per second, read

and write counts, and cache contention from the CPU, Unibus and

Massbus controller.

0 Inputs - The location of the Fast Bus data and its

length on the collected data file.

0 Process - This module will print the heading for the
Fast Bus report. It will read the data from the

collected data file, process the data, attach a

heading to each data item and print them.

2-64

Outputs - The Fast Bus report will be the output from

this module.

2.4.1.5 Mass Bus Report Module

This report is produced for an 11/7U only. It contains transfer rates

for each Hass Bus controller.

1ý Inputs - The address and length of the Mass Bus data

in the collected data file.

0 Process - The Mass Bus heading is printed, followed by

the read and write rate of each Mass Bus controller on

the system. This data is read from the collected data

file.

o Outputs - The Mass Bus report is the output produced.

2.4.1.6 PUD Report Module

The Physical Unit Device (PUD) report contains information the devices

configured to the system, their on-line and log-on status.

o Inputs - The address and length of the PUD data in the

collected data file.

0 Process - The PUD heading is printed. The FUI) data is

read in from the collected data file. The data is

translated, formatted and printed with an explanatory

heading.

0 Outputs -The PUD report is produced as output.

2-65

S• . = _ _ ;,i• • ;2. '• "-.' " 4 2

2.4.1.7 CPU Report Module

This report givea statistics on the Central Processing Unit (CPU).

The data reported on consists of the following: Percent time at kernel

supervisor and user mode, percent time at priority levels (4,5,6,7),
percent the CPU is not busy, percent CPU-I/O overlap, percent CPU-FFP

[~overlap, ccu.nt of floating point instructions and their rate.

0 Inputs - The input to the CPU report module is the

address of the data on the collected data file.

o Process -The heading for the CPU report is printed.

The CPU data is then read from the collected data

file. The percentages are computed and printed with

aý- explanatory text.

0 Outputs -The CPU report is produced as output.

2.4.1.8 Fault ReotModule

This report contains data on error conditions. The errors reported on

consist of the following: slave faults, unclaimed NP(. and liGs, memory

of bounds, odd address error and multiple NPR and BR counts.

0 Inputs - The address of the fault data on the

* collected data file is received as input.

0 Process - The Fault report heading is printed. The

fault data is read from the collected data file. This

data and explanatory headings are printed.

0 Outputs -The fault report is produced as output.

2-66

2.4.2 Dynamic Meaazi'rement Report Module

This report contains the data collected for every Dynamic Measurement.

SýInce these measurements may change drastically from one measurement

session to the next, no standard report format can be, specified. Four

modules are called by this module: Heading; Count; Time; Histogram.

0 Inputs - The data description file and the collected

k data file are used as input.

0 Process - The data description file is read. For

every dynamic measurement, the data associated with it

is read. The heading module is called to print text

describing the measurement. Then one of three

measurement modules is called depending on what, type

of data was collected. The three routines are count,

time and histogram.

o Outputs - The text that describes a measurement and

the values read in from the collected data module.

2.4.2.1 Heading Module

This module produces a heading text for every dynamic measurement.

o Inputs - The input to this module is a text that

describes the measurement.

o Process - This module expands the text into a more

human understandable format and prints it.

o Outputs - The expanded description text for 11

measurement.

2-67

2.4.2.2 Count Module

This module prints the numeric value of a counted measurement.

0 Inputs - The data words containing the number of times

the measurement occurred.

0 Process - The data is converted from a binary number

into an ASCII string. The ASCII string is then

printed.

0 outputs -The ASCII string corresponding to the binary

number.

2.4.2.3 Time Module

This module converts the binary representation of a time into an ASCII

string of days, ours, minutes, seconds and fractions of seconds.

0 Inputs - The binary data for the time or length of

time of a measurement.

0 Process -The binary data is divided by the number of

fractions in a second. This leaves a number of

seconds and the remainder. This remainder is the

fractions of seconds. The number of seconds is

divided by 6U. This gives the number of minutes and

the remainder is the number of seconds. The number of

minutes is divided by 60 giving hours and minutes as a

remainder. The hours are divided by 24 giving days

with hours as a remainder. These numbers are

translated into ASCII strings and printed.

(2-68

o Outputs - The day, hour, minute, second and fraction

of a second that a measurement took o: the time of a

measurement.

2.4.2.4 1istogram Module

This module produces a hiatogram from the data collected for a

measurement.

o Inputs - The address of the histogram data in the

collected data file and the number of data element.

0 Process - The data for the histogram is read in. Each

data element is added to a total count. This count is

used to scale the output. Then the total count is

divided by the number of lines on a page. This number

is used to scale the output.

o Outputs - The output is a histogram of the

measurement.

2-69

________ ~ -- I~ '

I

0 Outputs - The day, hour, minute, second and fraction

of a second that a measurement took or the time of a

measurement,

2.4.2.4 LListojram Module

This module produces a histogram from the data collected for a

measurement.

0 Inputs - The address of the histogram data in the

collected data file and the number of data element.

0 Process - The data for the histogram is read in. Each

data element is added to a total count. This count is

used to scale the output. Then the total count Is

divided by the number of lines on a page. This number

is used to scale the output.

o Outputs - The output is a nisr.-gram of the

measurement.

2-69

S " •T'•._•.,=;• 2 •:•• = ;•= • • l•'Z-"

3.0 HARWAR DESIGN

This section presents details on the design and theory of operation

for the nicrocomputer-based hardware components of the IPPA. Section
3.1 provides the overview of the hardware elements necessary for

understanding the detailed theory of operation found in Section 3.2.

Supplementury timing data and parts lists are provided in Section 4 of

the volume. Manufacturer specifications for components of the design

are listed in section 6 of this volume.

3.1 Hardware Overview

Ovevall operation of the IPPA is controlled by the Microcomputer (MC)

and its associated software program. The MC consists of Z8001A

microprocessor and Lis support circuitry, program ROM, program RAM,

and various I/O devices. To increase performance the MC utilizes

memory-mapped I/O rather than the standard I/0 address space, which is

otherwise available using a small set of I/O instructions. The

following devices occupy the X I/0 space:

(1) Control and Status Register (CSR)

(2) Mask Register

(3) Eivror Register (ERR)

(4) FIFO

(5) System Timing Controller (STC)

(6) Interrupt Conzroller (iC)

(7) Vector Register (VECR)

3-1

(8) Peripheral Activity Module (PAN)

(9) Serial Communicatons Controller (SCC) - optional.

(10) Associative Memory (AM)

(11) Qualifier Logic (QL)

Data flows into the IPPA from the host processor via the

host/microprocessor control interface and the high speed preprocessing

circuitry (Qualifier logic) connected to signal sources on the host.

Special purpohe timing and counting logic (STC, PAM, AM) under MC

control handles such of the heavy work and passes the MC only that

data (via the IC) necessary for further organization and/or action.

The MC is responsible for configuring the special purpose logic to

perform the necessary functions and for the accumulation and

organization of collected data that will eventually be included in the

system reports.

The following sections describe each of the IPPA hardware components

according to their function.

3.1.1 Microprocessor Elements

3.1.1.1 Microprocessor

The Z800IA is a 16-bit microprocessor with segmented addressing which

runs at a clock frequency of 6.0 Megahertz.

Support circuitry includes a timing generator, status decoder, address

latches, and data and control signal buffers. The status, address,

data, and control lines make up the Hicrobus.

3-2

3.1.1.2 Kicrobus Address SRaceIUse Hicrobus (MB) uses 19 of the 23 available address lines. This

yields an address space in the range free O00OO0 to 7FFFFH. (The 'K'

suffix Indicates use of a hexadecimal number base). lae upper three

Kicrobus address lines are derived from the lover three Segment output

signals (i.e., SRO, SNI, SN2), which are generated by the

microprocessor. These three address lines are decoded to select one

of the eight memory 'pages". each containing 64K-bytes. Table 3-1

shows the mapping of the MC address space.

3I

i

I-
It

e Address (hex) Utilization

0 00000 - OOFFF 2K Program RON (minimsu size)

01000 - 07FFF expansion Program RIM (up to 16 .

maximum)

0,1 08000 - IFFFF unassigned

2 20000 - 27FFF 16 Program RAM (minimum site)

2,3 28FFF - 3FFFF expansion Program RAM (64K maxi-sum)

4,5 40000 - 5FFFF Associative Memory (64K)

6 60000 - 6FFFF unausigned

7 70000 - 7FFF 1/O space (see Table 3-2)

Table 3-1 MC Address Space Mapping

3-4

=--t"22

Within the 1/0 space the 16-bit address in partitioned into fields as
depicted in Figure 3-1. Table 3-2 lists the specific addresses for
the MC 1/0 devices.

3-5

I• ,

111 10 8 7 5 4 0 (
Non-existent Device Unit Niumber Register Address

1/0 (0-7) (0-7) (0-31)

Figure 3-1 MC 1/0 Address Devices

j,

3-

Address (hx Device

Ooxx Control and Status Register

O1xx Error Register

02X0 - 02XF FIFO (as follows)

0200 Control Register 0

0202 Control Register 1

0204 Interrupt Status Register 0

0206 Interrupt Status Register I

0208 Interrupt Status Register 2

020A Interrupt Status Register 3

F020C Interrupt Vector Register

020E Byte Count Register

0210 Byte Count Compare Register

0212 Control Register 2

0214 Control Register 3

0216 Message Out Register

0218 Message In Register

021A Pattern Match Register

021C Pattern Mask

021E Data Buffer Register

Table 3-2 MC 1/O Devices Addresses (page 1 of 3)

r 3-7

Address (hex) Device

0300 - 03FF System Timing Controllers

(as follows)

0300 STC 0 Data Register

0302 STC 0 Control Register

0304 - 031F Redundant

0320 STC I Data Register

0322 STC I Control Register

0324 - 033F Redundant

0340 STC 2 Data Register

0342 STC 2 Control Register

0344 - 035F Redundant

0360 STC 3 Data Register

0362 STC 3 Control Register

0364 - 037F Redundant

0380 STC 4 Data Register

0382 STC 4 Control Register

0384 - 039F Redundant

03AO STC 5 Data Register

03A2 STC 5 Control Register

03A4 - O3BF Redundant

03C0 STC 6 Data Register

03C2 STC 6 Control Register

03C4 - 03DF Redundant

03EO STC 7 Data Register

03E2 STC 7 Control Register

03E4 - 03FF Redundant

Table 3-2 MC I/O Devices Addresses (page 2 of 3)

3-8

Address (hex) Device

0400 - 04FF Interrupt Controllers (as tollows)

0400 IC 0 Data Register

0402 IC 0 Control Register

0404 - 041F Redundant

0420 IC 1 Data Register

0422 IC I Control Register

0424 - 043F Redundant

0440 IC 2 Data Register

0442 IC 2 Control Register

0444 - 045F Redundant

0460 IC 3 Data Register

0462 IC 3 Control Register

0464 - 047F Redundant

0480 IC 4 Data Register

0482 IC 4 Control Register

0484 - 049F Redundant

04AO - 04FF IC Expansion

05XX Vector Register (read only)

0600 - 06FF Peripheral Activity Module

(utilization T.B.D.)

07X0 - 07X7 Serial Communications Controller

(utilization T.B.D.)

07X8 - 07XF Redundant

0800 - FFFF Non-existent I/O

Table 3-2 MC I/O Devices Addresses (page 3 of 3)

3-9

Figures 3-2 and 3-3 show the address decoding for the STC and

Interrupt Controller circuits.

3-10

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 1 X X X 0

STC 0 - Data

1-Control

Figure 3-2 STC Address Decoding i

3-11

I,, • •• • .J -"f• •'-"f.,,• ••• ,

0 0 0 0 0 1 0 0 X X 0

IC 0 -Data

I-Control

Figure 3-3 Interrupt Controller Address

3-1

•3-1

3.1.1.3 Program ROM

The program ROM circuitry has been designed to accomodate from

2K-words to 16K-words of either EPROM, for development purposes, or

high-speed PROM. Pin-compatible 2K-by-8 and 4K-by-8 packages have

been designated which should offer a high degree of versatility. A
patch plug is used to select the proper addressing scheme for the type

and quantity of ROMs being used. The patch plug is also used to

select the number of any necessery WAIT states which must be generated

when the access time of the ROM is greater than approximately 220

nanoseconds. Each WAIT state adds 167 nanoseconds to the memory's

permissible access cycle.

3.1.1.4 Program RAM

The Program RAM has also been designed to allow flexibility in RAN

usage. Either 16K-by-1 or 64K-by-) dynamic RAMs may be used, which

provides a maximum of 64K-words of read/write memory. A patch plug is
used to select the proper addressing scheme for each type of RAM. 1

Program RAM is accessible on either a word or byte btsis, and parity

generation and checking is included for both the low and high byte.

3.1.1.5 Refresh

The ZBUUlA must be programmed to generate the necessary refresh cycles

for the dynamic memory. This is done simply by loading the desired

value in the Rate Field and setting the Refresh Enable (RE) bit in the

Refresh Control Register. The RE bit enables the internal refresh

mechanism, while the Rate Field determines the period between refresh

cycles. lf 'n' represents the value placed in the Rate Field and ZCLK

is the Microprocessor clock frequency, then the refresh period (RP)

can be found using the formula:

RP -

or n -

3-13

The Program RAM, as well as the dynarut Hm ased in the Associative

Memury (Paragt-ph 3.1.3), requites a refresh period not to exceed

15.625 microseconds, Thus,

0.

n -. 23.4375

The value placed in the Rate Field must pot exceed 23 (and mwst be,

greater than 0) to ensure proper RAM operation.

3.1.2 Microcomputer 1/0 Devices

The devices which respond Lc the MC I/O addriss space aret

(1) Host Interface Registers (Section 3.1.2)

(2) Error Register (Section 3.1.2.2)

(3) System Timirg Controllers (Section 3.1.2.3)

(4) Interrupt Controllers (Section 3.1.2.4)

(5) Vector Regis'-er (Section 3.1.2.5)

(6) Peripheral Activity Hodule (Section 3.1.2.6)

'7) Ser-.'al Communications Controller (Section 3.1.2.7)

(optional)

The I/O address space is dezcribed in Paragraph 31.1.2.

3-14

3.1.2.1 Iiout Interface

The IPPA acti. L "dumb" periphera. device in the host PDP system. This

means that all interacLion botween the hoit conpttter &nd the IPPA is

initiated and controlled by the host.

The IPPA responds directly to a block of four word-addresses in the

PDP Peripheral Vage. This block of addresses may be located anywhere

in the Peripheral Page by appropriately setting the Address Select DIP

switches. These addresses (octal) access the following registers:

0 Control and Status Register (address 7XXXXO)

o Mask Register (address 7XXXX2)

0 FIFO Data Buffer Regicter (address 7XXXX4)

o FIFO Control and Status Register (address 7XXXX6)

All registers are read/write with the exception of the upper byte of

the CSR, which is read only.

3.1.2.1-.1 Control and Status Reise (CSR)

The bit assignments for the CSR are shown In Figure 3-4.

3-15

DONE IDE IKE CMD3 CMD2 CMDI CHDO GO

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit I bit 0

CSR - lover byte

Note: denotes read only

HARD SOFT PkR)GRAM FIFO MEMORY TIMEOUT MICRO RUN

ERROR ERROR "'OW ERROR ERROR ERROR

bit 15 bit 14 bit 13 bit 12 bit 1i bit 10 bit 9 bit 8

CSR - upper byte

Figure 3-4 Bit Assignments

31
I'

3-16

The CSR bit asb!inments are defined in Table 3-3..

1.1I

glT FUNCTION

0 The 'GO bit Initiates the command defined by CSR bits 1-4.

1-4 'CMDO - CMD3' define the command issued to the IPPA

(see Table 3-4).

5 Tne 'lEE' bit (Interrupt on Error Enable), when set, allows

the IPPA to generate an interrupt to the host, if an error

condition Is detected by the IPPA hardware.

b The 'IDE' bit (Interrupt on Done Enable). when set, causeo

the IPPA to generate an interrupt when the 'DONE' bit is set.

The only exception to this is if the host issues a RESET

command, which has the effect of resetting the GO, IEZ, and

IDE bits and setting the DONE bit.

7 The 'DONE' bit informs the host computer that the IPPA has

acknowledged a previously issued command and that the IPPA is

ready to accept a command. Normally, commands should not be

issued unless the 'DONE' bit is set.

s The 'RUN' bit indicates that the IPPA is in the data

coliection mode. When reset, the IPPA is in the HALT state.

9 The 'MICRO ERROR bit indicates that the IPPA microprocessor

has detected an error condition (i.e. software-detected

error).

Table 3-3 CSR Bit Assignments (page 1 of 2)

3-18

10 The 'TIMEOUT ERROR' bit indicates that a microprocessor WAIT

condition has exceeded its maximum length.

11 The 'MEMORY ERROR' bit indicates that a memory error has

occurred. If this bit is set in conjunction with the "SOFT

ERROR' bit, it indicates a parity error in the associative

RAM. When 'MEMORY ERROR' is set in conjunction with the

'HARD ERROR' bit, it indicates either a parity error in the

program RAM, a ROM access error, co an attempt to access

non-existent memory.

12 The 'FIFO ERROR' bit indicates than an overflow or underflow

condition exists when the host accesses the FIFO Data Buffer

Register. If this bit is set in conjunction with the 'MICRO

ERROR' bit, it indicates that the microporcessor has detected

an operational error in the FIFO.

13 The 'PROGRAM ERROR' bit indicates either an attempt by the

host to write to the CSR while the 'GO' bit is set or an

attempt by the microprocessor to access the associative RAM

while in the RUN mode.

14 The 'SOFt ERROR' bit indicates than an error has occurred

which is deemed non-critical to IPPA operation, but which

could invalidate some phase of the data collection procedure.

15 The 'HARD ERROR' bit indicates that a critical error has

occurred within the IPPA hardware.

Table 3-3 CSR Bit Assignments (page 2 of 2)

3-19

CMD3 CMD2 CMDI CMDO Comv.and Decode

0000 IDLE (microprocessor restart)

0001 READ TRANSFER ADDRESS

0010 READ TRANSFER COUNT

0011 READ PROGRAM MEMORY

O010 READ ASSOCIATIVE MEMORY

0101 READ PAM

O110 unassigned

1il1 HALT

1000 RESET

1001 WRITE TRANSFER ADDRESS

1010 WRITE TRANSFER COUNT

1011 WRITE PROGRAM MEMORY

1100 WRITE ASSOCIATIVE MEMORY

1101 WRITE PAM

1110 unassigned

1111 RUN

'fqble 3-4 Command Field Sunmary

I

- I

Access to the CSR by the Microcomputer (MC) is slightly different than

the access by the host system. When the host writes the 'GO' bit, a

vectored interrupt to the MC is generated. When the MC responds to

this interrupt, it reads the CSR; this causes the 'GO' bit to be

reset. The bits corresponding to the Command Field (bits 1-4) are the

only bits read by the MC. Those bits which can be writren by the MC

are the 'DONE' bit, the 'RUN' bit, and the 'MICRO ERROR' bit.

3.1.2.1.2 Mask Register (MR)

The MR is a 16-bit register which is used primarily to enable or

disable the counting or timing of specific events under direct control

of the host system. The intent is to qualify these specific events to

certain higher-level events which are detected and controlled at the

system level. The MR correlates directly with the output of the

associative memory, masking it on a bit-by-bit basis.

3.1.2.1.3 FIFO

The FIFO is configured with Port 1 as a low-byte and high-byte Z-BUS

device and with Port 2 as a non-Z-BUS CPU device. In this

configuration the MC must initialize the appropriate FIFO registers

for the desired operation. It is intended tha the MC will control all

data transfers through the FIFO by the appropriate interpretation of

the CSR Command Field. There are several different methods which can

be used to handle this exchange of data, including the following:

o Microcomputer control using CSR

o Host control

o Handshake

0 Use of FIFO Message Register

3-21

The DU provides access to a 128-word-deep bidirectional FIFO Data

Buffer (DBR) and the FIFO Control and Status Register (FCS).

The DBR provides to a 128-word-deep bidirectional FIFO which allows

blocks of data to be transferred between the host the the IPPA. The

host controls the transfer across the Unibus interface, but the actual

control of the FIFO is done by the microprocessor through the CSR
command field.

3.1.2.2 Error Register kERR)

The ERR is a 16-bit register which is accessible only to the MC. It

offers a more definitive assemblage of error conditions than those

available to the host via the CSR. Error conditions are defined as

either hard or soft, depending on their criticality to overall MC

operation. Hard errors will generate a non-maskable interrupt (NMI)

which forces the MC to respond to the error condition. Hard errors

can generally be regarded as fatal to the MC operation. Soft errors,

on the other band, may be recoverable or may only effect the integrity

of collected data. Soft errors will generate a nonvectored interrupt

(NVI), which can be enabled or disabled under software control.

Table 3-5 describes the bits in the ERR, corresponding bits in the

CSR, their severity to the MC, and the cause of the error condition.

3-22

,~*r'1W~~~ -. -

BIr NAaE CSR BIT HARD/SOFI CAUSE

0 CLAM 11 and 14 S Combinational Ram parity error

PAR ERR

1 DRAM 11 and 14 S Data RAM parity error

PAR ERR

2 ARAM 11 and 14 S Address RAM parity error
PAR ERR

3 HI PAR ERR 11 and 15 H Program RAM (hi byte) parity

error

4 LO PAR ERR 11 and 15 H Program RHA (lo byte) parity

error

5 NX I/O 11 and 15 H Attempt to access non-

existent I/0

6 NX RAM 1). and 15 H Attempt to access non-

existent RAM

7 NX ROM 11 and 15 H Attempt to access non-

existent ROM

Table 3-5 Error Register Bit Descriptions (page 1 of 2)

3-23

BIT NAME CSR BIT HARD/SOFT CAUSE

--- m---------------------------

8 ROM ACC ERR 11 and 15 H Attempt to write Into ROM address

space

9 RAN ACC ERR 13 and 14 S Attempt to access Associative
Memory wl~ile in 'RUN' mode

10 VEC OVFL H Vector silo register overflow

11 FIFO ERR 12 S Host access to FIFO causes either

overflow or underflow

12 TIMEOUT 10 H MC 'WAIT' timer has elapsed

while accessing FIFO
13 OVERRUN S PAM did not respond In time

to valid Unibus Cycle

14 undefined

15 undefined

Table 3-5 Error Register Bit Descriptions (page 2 of 2)

3-24

3.1.2.3 S•stem Timing Controller (STC)

The STC plays a vital role in the overall opecation of the IPPA. All

events which are timed or counted at a relatiiely high frequency are

done so by using an STC. The IPPA uses eight STC circuits, each

containing five 16-bit counter/timers, which makes forty

counter/timers available. Each counter/timer is individually

configured via the STC's internal control registers. This

configuration must be done by the operational software. Table 3-6

describes the function of each STC counter/timer.

I|

3-25

L - 7-=

STC Timer/Counter Function

0 CTO0 Masked Associative Memory Bit O0

0 CT01 .1
0 CT02 .i.eBBS 02

0 CT03 Tiee 03

0 CT04 Cou.t...04

1 CT05 Priority05
1 CT06 06

1 CT07 07
1 CT08 08

1 CT09 9

2 CT1O Kernel Mode

.2 CT1 1 SuperMode

2 CT12 Time BBSY

2 CT13 Time CPU ot Busy

2 CTT4 Count MSYN
Count MlSYN for Write Cycles

3 CT15 Priority 4

3 CT16 " 5

3 CT17 " 6

3 CT18 " 7

Table ---6 STC Counter/Timer Functions (page 1 of 2)

3-26L ___

ST C Timer/Counter Function

3 CT19 CPU Wait Time for Floating Point Processor

4 CT20 NPR/NPG

4 CT21 BR7/BG7

4 CT22 BR6/BR6

4 CT23 BR5/BR5

4 CT24 BR4/BR4

5 CT25 Real Time Clock 1

5 CT26 Real Time Clock 2

5 CT27 BR6/BG6

5 CT28 BRS/BG5

5 CT29 BR4/BG4

6 CT30 Instruction Fetch

6 CT31 CPUiMemory Overlap (11/45)

6 CT32 CPU/Memory Overlap (11/70)

6 CT33 Cache MISS

6 CT34 CPU Memory Cycle

7 CT35 Memory Read Cycle

7 CT36 Total Memory Cycle

7 CT37 CPU Memory Cycle/CPU Contention

7 CT38 Unibus Memory Cycle/Unibus Contention

7 CT39 NBC Memory Cycle/MBC Contention

Table 3-6 STC Counter/Timer Functions (page 2 of 2)

V 3-27

_21
3.1.2.4 Interrupt Controller (i•c

The IC provides a method of generating prioritised, vectored

interrupts to the MC. The IPPA uses five IC circuits, each capable of

handling eight intet-rupt inputs. These five ICs are daisy-chained to

provide the MC with forty different prioritized interrupts. The IC is

made extremely versatile through the use of programable registers,

which are internal to each IC. Common or individual vectors can be

assigned to each interrupt, and this information, as well as other

operational parameters, is sent to each IC under control of the

operational software. Table 3-7 lists the interrupt inputs to each

IC, and the respective priority and group priority.

31

I

3-28 1
V1
Li

Priority

Level Devices Function

39 CT 26 Real Time Clock
38 Host INTR Interrupt Occurred on Unibus

37 GO H Interrupt from Host to mC

36 PAM INTR Interrupt from PAM to MC

35 CT O0 CRAM
34 CTO3 CRAM

33 CTO2 CRAM
32 CT 03 CRAM

31 CT 04 DRAM
30 CT 05 DRAH

29 CT 06 ARAM

28 CT U7 ARAM

27 CT 08 ARAM
26 CT 09 ARAM
25 CT 35 Memory Read Cycle
24 CT 36 Total Memory Cycles%
23 CT 37 CPU Memory Cycle/CPU Contention
22 CT 38 Unibus Memory Cycle/Unibus Contention
21 CT 39 NBC Memory Cycle/MBC Contention

20 CT 30 Instruction Fetch

Table 3-7 Interrupt Table (page 1 of 2)

(3-29

L

19 CT 31 CPU/Memory Overlap (11/45)

16 CT 32 CPU/Memory Overlap (11/70)

17 CT 33 Cache MISS

16 CT 34 CPU Memory Cycle

15 CT 10 Kernel Mode

14 CT 11 Super Mode

13 CT 12 Time BBSY

12 CT 13 Count Total Unibus Reads' and Writes'

11 CT 14 Count Unibus Write Cycles

10 CT 15 Priority Level 4

9 CT 16 Priority Level 5
8 CT 17 Priority Level 6

7 CT 18 Priority Level 7

6 CT 19 CPU Wait due to EPP

5 CT 20 NPR/NPG

4 CT 21 BR7/BG7

3 CT 22 BR6/BG6

2 CT 23 BR5/BG5 (BR4/BG5) taken at same time

I CT 27 BR6/BG6

O CT 28 BR5/BG5 (BR4/BG4) taken at same time

Table 3-7 Interrupt Table (page 2 of 2)

3-30K __ ___ _______ i

3.1.2.5 Vector Register (VECR)

The VICR is a 16-word-deep, 9-bit-wide FIFO silo which captures the

lower nine bits of Unibus data whenever an interrupt occurs in the

host system. Whenever the VRCR has been loaded with a vector, an

interrupt viii be generated to the MC. The VECR can store up to

sixteen vectors before an overflow error condition exists. The HC

operational software will normally unload the VECR in its interrupt

service routine by simply reading the VECR.

3.1.2.6 Peripheral Activity Module (PAM)

The PAN is used to analyze information placed on the Unibus by the

hoat system. It does this through a combination of information loaded

into its internal registers by the MC and program routines which are

contained in its internal Micro-program ROM. The PAM responds to all

addresses of the I/O Page within the range of 0600-UbFF (HEX). This

allows direct mapping of Microcomputer addresses to the 32 internal

registers of the PAM.

3-31

3.1.2.7 Serial Communicatinna Controller (SC)

The Microcomputer 1/0 address decoding provides for an optional SCC.

The designated SCC is the Z8030, which to compatible with the MC and

provides two full-duplex serial channels. The SCC and a small amount

of support circuitry, such as RS-232 drivers anO receivers, would

allow the MC to communicate directly to a terminal and/or serial

printer.

3.1.3 AssociativeMassory (AM)

The AM consists of a 64K-by-16 dynamic RAM which is partitio-aed into

three groups: (1) a 64K-by-8 Address Associative RAN (ARAM), (2) a

64K-by-A Data Associative RAM (DRAM), and (3) a 64K-by-4 Combinational

Associative RAM (CRAM). Parity is generated and checked for each

group. The AM associates in the follewing manner.

When the IPPA is in the RUN mode, i.e., collecting data, each of the

three AM groups is addressed uniquely. The ARAN is addressed by

either the sixteen bit virtual address or the upper sixteen bits of

the physical address generated by the host processor. If a particular

address or group of addresses is of interest, a bit in the ARAN

corresponding to the address(es) of interest is preset during the user

set-up session. Then, if this particular virtual or physical address

is accessed by the host, the ARkM output will indicate than an

association has been made. The eight-bit-wide ARAM allows eight

unique associations for each address.

The DRAM is addressed by the host processor's 16-bit data bus. In a

manner similar to the ARAM, the four-bit-wide DRAM allows four unique

associations to be made for every data word generated by the host.

3-32

The CRAM is addressed by ten selected host processor status and

control signals plus four outputs from the ARAM and two outputs from

the DMM. The fotir-bit-wide CRAM allows four unique associations to

be made on the 65,536 different combinations of signals which address

the memory.

When the IPPA is in the HALT mode, i.e., not collecting data, the MC

can access the AM to either load the memory or to verify its contents.

Paragraph 3.1.1.2 shows that the AM occupies Page 4 and Page 5 of the

MC Address Space. The lower 32K of the AM is in the address range

from 40000H to 4FFFFH and the upper 32K is in the range from 50000H to

5FFFFH. The MC may access the AM only on a word basis, and while in
the HALT mode the MC generates all refresh cycles to the dynamic RAM.

While in the RUN mode the Associative Memory Timing and Control logic

controls all AM operation, including refresh. The memory cycle time

is 300 nanoseconds for both an association cycle or a refresh cycle.

Arbitration logic determines which cycle occurs.

3.1.4 Qualifier Logic

The Qualifier Logic is responsible for reducing - or qualifying -

discrete signals from other areas of the IPPA hardware and from the

host system to a form that represents a unique input to the

measurement collection logic, i.e., the System Timing Controller. The

Qualifier Logic can be roughly separated into two sections. The first

section is used with either the PDP-11/45 or 11/70, and the second

section is used only with the PDP-11/7L.

3.1.5 Peripheral Activity Module

The need for a Peripheral Activity Module (PAM) originally arose with
the requirement to assess peripheral periormance on the Unibus. Since

D•A-type devices leave no telltale traces ,iile performing NPR

3-33

transfers, the "AM was conceived to allow determination of Unibus

usage by a specific ,"- ice through association of the address that Is

placed on the Unibus by the device during an NPR transfer. The PAN

calculates the address range "on the fly" by interpreting the data

loaded into the peripheral device's :egisters prior to initiation of

the DMA transfer, The algorithm used to determine the address range

is as follows:

0 Low Address = Contents of Bus Address Register Merged
with Extension Bits

o High 4ddress ! Low Address Plus 1's Complement Word

Cou0,

At this time it Is felt that the concept of analyzlng Unibus

information "on the fly" can be broadened to include the analysis of

Unibus data transferred hetween the host system and any register or

group of registers for a specific peripheral device. This might allow
the PAM to collect a wide assortment of statistics Oaaling with

peripheraJ performance and utilization.

3-34

-!.

S'1

J.2 Packaging

One of the initial - though not critical - design goals was to place

all the IPPA hardware on a single DEC hex-height module, compatible

with those used in the PDP-11/45 and 11/70 Central Processing Units.

This was to allow the 1PPA to be placed in one of the host CPU's Small

Peripheral Controller (SPC) slots with a minimum impact on existing

host system hardware. The hardware implementation shown in the

schematic drawings is that of a somewhat expanded design, which

includes embellishments for hardware and software debugging, and has

not been optimized for reduction of parts count. However, even though

the ixumber of integrated circuits can easily be reduced by ten

percent, it is still more realistic to assume that at least two

privited circuit boards (PCBs) will be required.

The following figures, based on approximations, are provided as an

estimate for the packaging requirements.

Number of components 235

Number of normalized components * 300 U I
PCB surface area @ 0.6 IN /component 180 IN

PCB surface area @ 0.65 IN /component 195 IN

PCB surface area @ 0.7 IN /component 210 IN

PCB surface area @ 0.75 IN /component 225 IN

DEC hex-height PCB (16 1/2 IN x 7.75 IN) 127 IN

* A normalized component is designated as a 20-pin DIP integrated

circuit and has a surfae area of I in. x 0.3 in.

The best IPPA performance will be achieved when it is physically the

first device on the Unibus. For all intent this physical location is

3-35

the first SPC slot in the CPU, and this will be the recomended

location.

3.3 EI/RFI Emissions

The IPPA hardware is intended to be mounted within the physical

confines of the host system and should not generate any EMI/EFI

emissions which are substantially different from those of the host

system. Any communication between the IPPA and an external I/O device

will be done via low-speed RS-232 serial interfaces. Internal,

discrete probe points will consist of twisted-pair or shielded wires

similar to existing backplane wiring.

3-36

3.4 Power Requirements

The following table summarizes the power requirements for all IPPA

hardware, except passive components. The circuitry for the Peripheral

Activity Module is also excluded from this table. Where possible, the
typical values are listed for rn ambient temperature of 250C. Any

exceptions to this rule are noted. Power consumption will be

dependent on the memory configuration and memory utilization. The

dynamic RAM memories and the EPROMs are placed in the "standby" mode

anytime the memories are not accessed, and this reduces their typical

supply current by a factor of ten. The following values reflect the

"active" supply currents and, thus, should represent a worst case

condition.

Supply Total

Configuration Current Power I
1. Operational system 8.48 Amperes 42.4 Watts

(2K x 16 ROM and 16K x 18 RAM)

2-a. Development system 8.02 Amperes 40.1 Watts

(2K x 16 EPROM and 16K x 18 RAM)

2-b. Development system 8.98 Amperes 44.9 Watts

(16K x 16 2PRO1| 4ind 64K x 18 RAM)

3-37

Supply Total Supply Total

Item Part No. Current(uA) Quantity Current(mA) Power(iW) Notes

--- 41 SN74LSOO 1.6 3 4.8 24.0

2 SN74LS02 2.2 3 6.6 33.0

3 SN74LS04 2.4 4 9.6 48.0

4 SN74LS08 3.4 9 30.6 153.0

5 SN74S08 25.0 1 25.0 125.0

6 SN74LS1O 1.2 2 2.4 12.0

7 SN74LS11 3.4 1 3.4 17.0

8 SN74LS14 10.32 2 20.64 103.2

9 SN74LS20 0.8 1 0.8 4.0

10 SN74LS21 3.4 2 6.8 34.0

11 SN74LS27 2.7 2 5.4 27.0

12 SN7428 22.52 1 22.52 112.6

13 SN74LS30 0.48 2 0.96 4.8

14 SN74LS32 4.0 5 20.0 100.0

15 SN74LS51 1.1 2 2.2 11.0

16 SN74LS73A 4.0 2 b.0 40.0

1i SN74LS74A 4.0 20 80.0 400.0

18 SN74S74 30.0 4 120.0 600.0

19 SN74S86 5U.0 2 100.0 500.0

20 SN74S112 30.0 1 30.0 150.0

Table 3-8 Power Requirements (page 1 of 3)

3-38

/ I I I • • • • • !'•"••'4

Supply Total Supply Total

Item Part No. Current(Ma) Quantity Current(mA) Pover(uW) Notes

21 SN74LS114A 4.0 2 8.0 40.0

22 SN74S114 30.0 2 60.0 300.0

23 SN74LS123 12.0 1 12.0 60.0

24 SN74LS132 7.04 2 14.08 70.4

25 SN74LS133 0.48 1 0.48 2.4

26 SN74LS138 6.3 4 25.2 126.0

27 SN74S138 49.0 2 98.0 490.0

28 SN74LS139 6.8 1 6.8 34.0

29 SN74S153 45.0 12 540.0 2700.0

30 SN74LSI57 9.7 4 38.8 194.0

31 SN74S157 50.0 4 200.0 1000.0

32 SN74S158 50.0 1 50.0 250.U

33 SN74LS161A 19.0 3 57.0 285.0

34 SN74S174 90.0 2 180.0 900.0

35 SN74S175 60.0 1 60.0 300.0

36 SN74LS195A 14.0 4 56.0 280.0

37 SN74S225 80.0 2 160.0 800.0

38 SN74LS244 20.0 7 140.0 700.0

39 SN74S244 110.0 1 110.0 550.0

40 SN74LS245 55.0 4 220.0 1100.0

Table 3-8 Power Requirements (page 2 of 3)

3-39

F

"Supply Total Supply Total

Item Part No. Current(mk) Quantity Curreut(.A) Pover(uW) Notes

41 SN74LS260 4.4 2 8.8 44.0

42 SN74S280 67.0 5 335.0 1675.0

43 SN74LS373 24.0 3 72.0 360.0

44 SN74LS374 27.0 8 216.0 IO80.0

45 SN74LG378 13.0 2 26.0 130.0
4' 6 US8641 50.0 14 700.0 3500.0

S47 MSOO1A 300.0 1 300.0 1500.0 MAX

48 AmZ8127 125.0 1 125.0 625.0

49 Z8U38A 250.0 2 500.0 2500.0 MAX

50 Am9513 160.0 8 1280.0 6400.0

51 Am9519-1 80.0 5 400.0 2000.0

52 Am25LS2518 17.0 5 85.0 425.0

53 Am25LS2521 27.0 2 54.0 270.0

54 HM-7616 180.0 2 360.0 1800.0 MAX

*54 2716 57.0 2-8 114.0-456.0 570-0-2280.0

*54 2732 85.0 2-8 170.0-680.0 850.0-3400.0

55 NMC5295 35.0 18 630.0 3150.0

**55 NMC4164 45.0 18 810.0 4050.0 MAX

**55 2311 21 18 414.0 2070.0

56 NMC4164-1 45.0 19 855.0 4275.0 MAX
i,57 C0-238A

Sndicates optional parts

**indicates alternate parts

Table 3-8 "wer tirements (page 3 of 3)

3-40

3.5 Qulifier , (Sheets Q Ind

The Qualifier Logic on Sheet is used with both PDP.-I/45 and 11/70

host systems. U217-"219A, B (SNdhLS08) are used to qualify the

outputs of the Associative Memory %AM 000-03 H, AMOO6-07 H, and AM

D12-15 H) with the Mask Register, MASKOO-09 H. These qualified

outputs, HAM 00-09, go directly to the System Timing Controller logic.

U22) (74LS73A) is used in conjunction with the lower four bits of the

Associative Memory to provide special gating to one of the STC

circuits, U118, on Sheet (K. The GATE I H and GATE 3 H signals are

asserted when HAM 01 H and MAM 03 H, respectively, are generated by

the Associative Memory and Mask Register. The gate signals are

negated when MAM 00 H and MAM 02 H are generated in a similar manner.

This special gating provides the programmable option of timing the

interval between any two events which can be generated by the

Combinational Associative Memory. U223A (SN74LS74A) and associated

logic gates are used to assess the interaction between the host

processor and the host system's Floating Point Processor (FPP). When

executing a floating point instruction, the FPP acts as a co-processor

and can operate almost entirely independent of the host processor.

When execution of a floating point instruction begins, the host

processor causes START PP H to be genevated. This in turn allows U223

A to be clocked into its active state, asserting FP REQ L, which

enables U1368 (SN74LS02). If the FPP does not respond within the

arbitrary time of one microsecond, DLY REQ L is generated which

asserts FP WAIT H. This signal is used as a gating signal in the

System Timing Controller (Sheet Q) to measure the time that the CPU

waits for the FPP, an indirect measure of the FPP efficiency. During

normal execution of a floating point instruction, the FPP issues FP

SYNC L in response to the host processor's FP START(1) H or FP ATTN L.

FP SYNC L is inverted and enables U222A (SN74LS260) to reset U223A.

Other conditions which reset U223A are: (1) HALT H, (2) FP EXC TRAP

L, which indicates that the FPP has generated a "trap" to the host

I 3-

processor, and (3) INTR H, which will normally abort the execution of

a floating point instruction to allow the host processor to service an

interrupt.

The host processor's priority and current mode are decoded by U221

(SN7ALSI39) to produce PRIOR 4-7 L and USER L, SUPER L, and KERNEL L,

U219C (SN74LS08) is used to generate UB OVERLAP H, an indication of

overlapping operation between the host processor and other Unibus

devices.

The logic on Sheet 0 is used to assess the operation the PDP-11/70r memory system. U225-U227 (SN74LS04 and SNA4LS14) buffer various

signals from the host system which are used in the IPPA hardware.

U9UC (SN74LSIO) asserts START H when any memory operation is

initiated. At the next negative transition of 24M CLKH, U229A

(SN7ALS73A) is clocked into its active state, asserting HEM CIP H

which indicates that a memory cycle is in progress. HEM CIP H is used

to clock flip flops U2248, U228A and U228B. When a memory cycle

starts, one of these flip flops will have an asserted signal at its

"D" input - CP ACKN H, MBC ACKN H, OR UB ACKN H - and one flip flop

will consequently be clocked into its active state to indicate the

current memory user. The signalu generated by these flip flops enable

U230 and U231 (SN74LS5l) to assess contention for memory resources.

For example, if either a Unibus or MBC memory cycle is in progress,

the assertion of CP REQ H will generate CP CNTH L, indicating that the

CPU is contending for memory. U231 is also used to determine when CPU

operation and other memory access overlap. The signal 70 OVERLAP H is

asserted when this condition exists.

U232A (SN74LS21) is used to determine a cache memory "miss" by AROing

the necessary conditions - a slow, read memory cycle not initiated by

an MBC.

3-42

U233 (SN74LS195A) is used to generate the clock for the CPU Data Latch

(Sheet @) and the CPU Status Latch (Sheet 0). When the CPU

accesses memory, CP REQ L is asserted which places U233 in the
"parallel load"mode. On the next positive transition of 20M CLK H a
"soe t " will be loaded into either QA or QB, depending on READ H.

During a write cycle READ h will be negated, causing U1360 (SNA4LS02)

to load Q which immediately generates CLK CPD M. During a read cycle

READ H will be asserted, causing U2008 (SN74LS08) to load QA" When

the memory cycle is completed, data is strobcd into the CPU and CP REQ

L is negated. This places U233 in the "shift" mode, and approximately

200 nanoseconds later a "one" is shifted into Q , generat|ug CLK CPD

h. This allows time for the data to become valid at the input to the

CPU Data Latch.

3.6 Peripheral Activity Module (Sheet U)

The Peripheral Activity Module (PAM) is essentially a co-processor in

the iPPA hardware, whose sole purpose is to collect information

regarding peripheral devices through interpretation of address and

data information that is presented to the Unibus. The hardware used

to implement this function is shown in Sheet " Although this

schematic is meant to serve as an intermediate hardware design, it is

functionally accurate.

The FAM utilizes an extremely fast 16-blt microprocessor integrated

circuit, the Am29116. In this application the Am29116

performs its intended function by executing a series of short programs

which are contained in the Micro-program ROM. The Micro-program ROM

is controlled by the 2910 Micro Secuencer. The particular program

being executed depends on several factors: (1) information loaded

into the PAM's internal registers by the Microcomputer, (2) current

"status" of the PAM, (3) current inputs to the PAM's Jump ROM and

Condition Code Multiplexer, and (4) current Unibus Latch data.

3-43

iI
When power is applied to the IPPA hardware, the PAM it initialized by

a pohar-up routine contained within the Micro-program RUM. This

serves the same purpose as the Microcomputer's power-up routine. It

places the hardware in a known state ready to respond to external

inputs. After the PAM is initialized, it will enter an "Idle" state,

where it awaits a command from the Microprocessor. Whenever the

Microprocessor accessed the PAM, ENB PAM L Is asserted which generates

PAM REQ H. When the RAM is in an idle state, it uses this input to

the Condition Code Multipexer to branch to one of its micro-programs,

the micro-program is determined by the inputs to the Jump ROM, which

are derived from the Microbus (Sheet) If the PAM cannot respond

to the Microcomputer within the time allocated for a normal memory

access, BUSY L will be asserted causing PAM WAIT to be generated.

This will cause WAIT cycles to be generated by the Microcomputer until

the PAM can properly respond.

The information presented to the Jump ROM can be thought of as a type

of "macro" instruction to the PAMl. Tehse macro Instructions are

divided into two broad categories: load class instructions and

execute class instructions. A load class instruction is used to pass

data between the Microcomputer and the PAM registers. When the

Microcomputer performs a write cycle, PAM REQ H is asserted and READ

DATA L is negated. READ DATA L controls the direction of the Microbus

Data Transceivers (SN74LS245), which when enabled by the Micro-program

ROM (ROM 19 L) allow data to be transferred from the Microbus (MDB

00-15 H) to the Pambus (PAMBUS 00-15 H). When a load class macro

instruction occurs and the Microcomputer is performing a read cycle,

the PAM will place the proper data on the Pambus, which is transferred

to the Microbus by the combination of signals ROM 19 L and READ DATA

L.

3-44

An execute clams macro instruction will place the PAM in its data

collection mode; this corresponds to the IPPA hardware being placed in

the RUN mode. When the RUN mode it entered, the logic on Sheet @ is

enabled, and UB CYCLE L will be asserted for every valid Unibus cycle.

This will generate PAM REQ H to the Condition Code Multiplexer. Since

the PAM has been placed in the data collection mode, PAN REQ H will

cause the PAM to branch from an idle &itate to the appropriate

micro-program routine. In this routine Micro-program RON bits 20 and

21 control the transfer of information from the Unibus Address Latch

(UBAL 01-16 M) and the Unibus DatA Latch (UBDL 00-18 H) to the Pambus

where this information can be processed by the PAM. When the

micro-program determines that an interrupt should be generated to the

Microcomputer - for example, when an internal counter overflows - the

Micro-program ROM will assert PtJk INTR H, and an interrupt will be

generated by the interrupt Controller (Sheet @). The appropriate

Microcomputer Interrupt Service Routine will generate the required

load class macro instruction to read PAM information, as described

before.

3-45

I

4.U THEORY OF OPERATION

4.1 Overview

This section describes the detailed Theory of Operation for the IPPA

hardware. It is intended to be used as a narrative to the schematic

drawings. The hardware can be roughly modularized into the following

groups:

o Unibus Interface

o Microcomputer

o Associative Memory

0 Qualifier Logic

0 Peripheral Activity Module

Each module is discussed fully in the following paragraphs.

4.1.1 Schematic Drawing Notation

An attempt has been made to increase the readability and

comprehensibility of the schematic drawings through the use of mixed

logic, polarized mnemonics, assertion level descriptors, and logic

state indicators.

4.1.1.1 Mixed logic cefers to the drawing of gate symbols to reflect

their intended logical function, rather that the function designated

by the integrated circuit manufacturer. Thus, a gate designated as a

4-1

NAND gate by the manufacturer, such as the SN7400, may appear in the

schematic drawings as either a NAND gate or an OR gate (with inverted

inputs), depending on the intended logical function. Figure 4-1 shows

some equivalent mixed logic gatcse.

4.1.1.2 Signal mnemonics suggest the logic function performed b the
signal at its active assertion level. All signal unemonics carry an
assertion level descriptor, either L or H, as the final character. As

the name implies, this descriptor indicates the level of the signal

when it is asserted, either LOW of HIGH. An overbar is associated

only with a mnemonic, not with the assertion level descriptor. The

overbar indicates that the complement of the logic function suggested

by the mnemonic is performed at the active assertion level indicated

by the accompanying descriptor.

kA

4-2

_ _. I

OESIGNATED SYMBOL EQUIVALENT SYMBOL

(a) SN7400

(b) SN7402

(c) SN7408

(d) SN7432

, ,J
Figure 4-1 Mixed Logic Gates

4-3

4 :

. • :. ,. • ',, 'e •• • • m • ' : .eP•,;• •••. '-•, L- " •. 7 ' , ?-:-':: T''• ' j T - in'•'• •' .'•

4.1.1.3 Logic state indicator. (or logic level indicators) are the

"bubbles" at inputs or outputs of logic elements; they convey

information concerning the asserted polarity of the signal on the

connecting logic line. The presence of the indicator shows that the

assertion level Is LOW, and the absence of the indicator shows that

the assertion level is HIGH. Since logic state indicators aud

assertion le vel descriptors do not always match, some guidelines were

established by which the descriptors and Indicators have been assigned

in the schematic drawings.

0 At the OUTPUT of a logic element, the state indicator

r and assertion level descriptor ALWAYS Indicate the

same level.

0 At the INPUT to a logic element, the state indicator

and assertion level descriptor will normally Indicate

the same level. However, if an incompatibility does

exist, a small triangle to,.)i used at the input

to indicate that this incompatibility is Intentional.

The triangle serves two purposes: first, It is an '

imediate indication to anyone interpreting the

schematic that the incompatibility is intentional, and

second, it gives insight into the funtion of the

signal.

4.1.1.4 For logic gates, the triangle indicates that

the complement of the signal is to appear in the

output logic expression. When the V symbol appears
at the input of an OR gate, it enables the logic

function performed by the gate. The following example

drawings.

E-ke16 JeC OLA-r-L U64

4-4

The AND function of gate U154 B in disabled when SSYN

H is asserted. The output logic expression for this

gate is:

SET BUSY L - (SSYN - MY BUSY , ENB VEC OUT) H

Note that the SSYN input mnemonic has been

complemented in the output expression. The OR

function of gate U59C is enabled when BBSY H is

asserted. The output logic expression for this gate

is:

SET BUSY L - (BBSY + MY BUSY) L

Again note that the BBSY input mnemonic is

complemented in the output expression.

4.1.1.5 For other logic elements the symbol

indicates that the function of the associated input is

inhibited by the presence of the signal and,

conversely, enabled by its cc¢plement. For example,

on SheetQ of the schematic drawings, flip flop

U14B has the signal MSYN H V on its "CLR" input.

This implies that the "clear" function is inhibited by

MSYN H and enabled by its complement, MSYN L.

4.1.1.6 Fl flp p especially V-typ always seem to

add an element of obscurity when attempting to

4-5

interpret schematic drawings. The guidelines for

determining the operational characteristics of flip

flop from the schematic notation is straight-forward

and follows the same guidelines described in theI
paragraphs above.

0 Internal mnemonics are those assigned by the

manufacturer and are used to describe the Internal

mechanism of the flip flop according to the

manufacturer's data sheet.

0 Signal mnemonics, assertion level descriptors, and

state indicators describe the functional operation of

the flip flop.

0 Signal mnemonics suggest the function of the ACTIVE

STATE of the flip flop, in almost all cases.

o The active state of the flip flop is determined by the

absence or presence of a state indicator at the

clocked input of the flip flop. The absence of the

indicator shows that the "Q" output will be HIGH when

the flip flop is in its ACTIVE state. (The flip flop
is generally regarded as "set" in this condition.) The

presence of a state indicator at the input shows that

the "Q" output will be LOW when the flip flop is in

its ACTlVE state. (The flip flop is generally

regarded as "reset" in this condition.) The functions

of the PRESET and CLEAR inputs follow the definition

of the active state.

0 State indicators on the "Q" and "Q outputs always

coincide with the assertion level descriptor of the

4-6

associated signal mnemonics when the flip flop is in

its ACTIVE state.

o The V symboi at a clock input indicates that the

flip flop will be clocked at the cow7lementary

transition of the signal connected to the clock input.

0 The V symbol at a data input indicates that the

associated signal will inhibit the function of that

input.

4.2 Unibus Interface (Sheets thru

The Unibus Interface consists of the following logic circuitry:

0 Unibus Address Interface and Decode Logic

0 Unibus Data Interface, Internal Data Bus, Control

Register

o Unibus Control Interface

o Mask Register, Unibus Latch

o FIFO, Vector Register

0 Unibus Acquicition Logic

4.2.1 Unibus Address Interface and Decode Logic (Sheet A)

The Unibus address lines, BUS AOO-17 L, are received and buffered by

bus transceivers Ul-U5 (DS8641) for use in the IPPA hardware. The

block of addresses used to communicate between the host system and the

4- 7

Lq m w • ••-•... .. •r • ••:--.••r -•-• • • T - •

IPPA Is deteruined by the setting of switch SWI, a 10-pole DIP switch.

When the host coimunicates with the IPPA, UBA13-17 H will be asserted,

indicating a Unibus Peripheral Page address, and URA03-12 H will

correspond to the selected address SWA03-12 H. U6 and U7 and cascaded

8-bit comparators (A&25LS2521) which generate the signal MY ADRS L

when the IPPA is addressed. This signal is used with UBA02 H and C1 H

to generate the individual read and write signals to the appropriate

registers. When the FIFO is accessed, FIFO H is asserted and U14

(SN74LS74A) generates either HR FIFO L or RD FIFO L, providing that

the proper FIFO access recovery time has elapsed. FIFO recovery is

discussed in the following paragraph.

4.2.2 Unibus Data Interface, Internal Data Bus, Control Register

(Sheet)

The Unibus data lines, BUS DOO-15 L, are received by bus transceivers

U15-U18 (DS8641) to transfer data information to the IPPA hardware.

Incoming data, UBDOO-15 H, is routed to the various registers and to

the Unibus Data Latch. The bus transceivers also transmit data from

the Internal Data Bus, IBDOO-15 H, to the Unibus. The tri-state

Internal Data Bus is the source of all data going to the Unibus, and

it can be enabled with data from the following sources:

SControl and Status Register (Sheet and)

0 Mask Register (Sheet

o FIFO Control Register (Sheet ®)

0 FIFO Data Buffer MSheet @)

0 Vector (Sheet ®)

4- 8

Data from the Ivternal Data Bus is transmitted to the Unibus when
either of two conditions exist: (1) the IPPA Unibu& Interface is

generating an interrupt to the host and ENI BED OUT i is asserted, or

(2) the host system is performing a read access to one of the IPPA

registers, and MY SSYN L is asserted and Cl H is negated. (Remember

that the darkened triangle associated with a single name indicates

that the mnemonic should be complemented in the output or terminal

logical expression).

The lower byte of the Control and Status Register (CSR) is implemented

using D-type flip flops. U19 and U21 (SN74LS74A) store CSR bits 0, 5,

6, and 7, and U20 (Am25LS2518) stores the four bits of the Command

Field, CSR bits 1-4. These CSR bits, with the exception of bit 7, are

written when the host system performs a write acces to the CSR,

generating CLK CSR H. When bit 0, the "GO" bit, is written, DONE H is

reset and an interrupt to the IPPA Microcomputer will be generated.

The Microcomputer Interrupt Service Routine (MISR) will direct the

Microcomputer to read the CSR, which generates MD CSR L. This signal

resets GO H and enables the tri-state outputs of U20, which source

MBDOI-04 H on the Microbus. (The Microbus is discussed in paragraph

3.1). The MISR will then proceed according to what is reads in the

Command Field, and at some point in time it should direct the

Microcomputer to write bit 7, the "DONE" bit in the CSR. DONE H is

set when MWR CSR L is negated, which insures that MBD07 H is valid

when the flip flop is clocked.

Any attempt by the host system to. write to the CSR while Go H is

asserted will set PGM ERR H, indicating a programming error.

FIFO access is controlled by shift register U22 (SN74LSI95A) and flip

flop U23 (SN74LS74A). This logic is required to meet certain timing

specifications of the Z8038 integrated circuit. The access sequence

is initiated whenever the host system performs a read or write

4- 9

operation to either the FIFO Control Register or the FIFO Uta Buffer.

This action will generate RD FIFO L or W FIFO L, respectively, and LD

RECOVER L will load U22 with all ones. RECOVER H is delayed two clock

periods (333 nanoseconds) before generating CLK SSYN H to allow FIFO

data to be accessed. On Sheet G CLK SSYN H clock set MY SSYN L,

which is delayed 50 nanoseconds before DLY SSYM H asserts BUS SSYN L

on the Unibus. Th- delay insures that Unibus data is valid when BUS

SSYN L is asserted. If a write operation is in progress, MY SSYN L

will terminate FIFO access by clearing WU FIFO L on Sheet (.

Returning to Sheet the second part cf the access sequence can

now be discussed. Until FIFO access to terminated, LD RECOVER L keeps

U22 loaded with ones, asserting RECOVER L. On Sheet 0 RECOVER L at

the input of U13 inhibits FIFO access by disabling this gate. When a

FIFO access terminates, LD RECOVER L is negated and U22 is placed in

the shift mode. Zeros will be shifted in via the J and K inputs, and

four clock periods later (667 nanoseconds) RECOVER L is negated,

enabling FIFO access.

4.2.3 Unibus Control Interface (Sheet

The Unibus Control Interface receives the remaining Unibus signals for

the use within the IPPA and transmits those signals necessary for

Unibus acquisition when the IPPA generates an interrupt to the host

system. Ul and U28-U32 (DS8641) perform these tacks. U33A (SN74LS28)

is the buffer for the IPPA hardware initialization signal, RESET L.

This signal is asserted when either the host system generated BUS INIT

L, causing INIT H to be asserted, or the System Clock Generator (Sheet

())generates MICRO RST L.

The wieclock for the Vector Reitr(Sheet flý) is generated by

the Schmitt Trigger U27D (SN74LS132), which is configured as a

75-nanosecond delay element. Whenever a host-system interrupt is

4-10

generated, INTR H vii be asserted. This will produce WR VICR Hs

"provided that MY B SY L is not asserted, indicating that the IPPA is

generating the host-system interrupt.

The prioity at which the IPPA operates is determined using a standard

DEC Priority Jumper Plug. It converts REQ L, GRANT IN H, and GRANT

OUT H to corresponding Unibus signals BUS ARn L, BUS &Gn IN H and BUS

BGn OUT H.

If the host system accesses either the CSR or the Mask Register, U24A

will be enabled and U26A will be direct-set. Since there is

essentially no access time for these registers, no delay Is required

before setting MY SSYN L.

4.2.4 Mask Register, Unibus Latch (Sheet ®)

The Mask Register, U34-U37, consists of four quad D-type registers

with both TTL and trn-state outputs (Am25LS2518). The TTL outputs are

used in the Qualifier Logic (Sheet (S)), and the trn-state outputs

source the Internal Data Bus when the host system is reading the Mask

Register and RD MASK L is asserted. The Mask Register Is loaded by

CLK MASK H, which is generated when the host system writes data,

UBDOO-15 H, Ifto the Mask Register.

U38-U41 1SN74LS374) and U26B (SN74LS74A) are latches for the Unibus

data, USDO0-15 H, and address, UBAO.-1 -1. The Unibus Latch, as well

as U42, are clocked by CLK UBL H. This signal is asserted at a point

when both Unibus data and address signals are valid. For a Unibue

DATO (data out) operation, this occurs when MSYN H Is asserted. For

the Unibus DATI (data in) operation, this occurs 75 nanoseconds after

SSYN H is asserted. U42 (SN74LS74A) generates UB CYCLE H whenever the

IPPA is in the RIN mode and CLK UBL H occurs. UB CYCLE H is used to

inform the Peripheral Activity Module (PAM - Sheet U) that a valid

4-11

7.,~

Unibus cycle has occurred. IF the PAM does not respond with UB ACK L

before the next Unibus cycle occurs, then OVERRUN H will be set,

indicating an error condition.

The Control and Status Register (CSR) is read by the host system when

trn-state buffers U43 and U44 (SN74LS244) are enabled by RD CSR L.

This allows U43 and U44 to source the Internal Data Bus. CSR bit 11

is derived from MEM ERR H, a logical OR of all detected memory error

conditions.

4.2.5 FIFO, Vector Register (Sheet

The FIFO, U47 and U48, consists of two Z8038A FIFO circuits and

additional support logic. Certain aspects of the Z8038 which relate

to its external operational interface will be discussed here. The

reference material in Appendix A should be consulted for a more

thorough description of the hardware and software operation of the

Z8038. The mode pins, MO and Ml, configure the Port I-sidL of U47 as

a Z-Bus High Byte device and the Port 1-side of U48 as a A-Bus Low

Byte device. This, in essence configures the FIFO for 16-bit word

transfers and allows the IPPA Microcomputer to access the FIFO as a

peripheral device. It is critical to note that the Z8038 must be

configured under software control so that Port 2 responds as a

Non-Z-bus device and that both Port 1 and Port 2 cransfer data by

means of "synchronized CPU and FIO". This will allow the support

logic to function in its intended manner.

The operation of the Port 2-side is streight-forward. When the host

system accesses the FIFO, FIFO L will be asserted along with either RD

FIFO L or WR FIFO L. UBA01 H will determine which register - FIFO

Data Buffer Register or FIFO Control and Status Register - is

accessed. During a read operation the tri-state data lines of the

Z8038 will be enabled and will source the Internal Data Bus. During a

4-12

write operation WR FIFO L enables tri-state buffers U45 and U46, which

allow Unibus data UBDOO-15 H to be written into the FIFO. If the host

system attempts to write into a full or read from an empty Data Buffer

Register, XFER ERR L will be asserted. This, in turn, sets FIFO ERR

H, indicating an error condition.

The operation of the Port 1-side of the FIFO is controlled by the

Microcomputer. Since the Z8038 is configured as Z-Bus device, its

data lines, MADOO-15 H, are connected directly to the udbuffered,

multiplexed address/data lines of the Z8iOb A w icroproceshor. Thi

other control signals come from the Microbus, which is described in

Paragraph 3.1. The major difference in accessing the FIFO from the

Port 1-side is that the Microcomputer can directly address al- sixteen

registers internal to the Z8038, whereas the host system can directly

address only two, as described above.

At this time, it is intended that all FIFO operations be controlled by

the Microcomputer via comands written into the SCR by the host

computer. The Microcomputer accesses the FIFO when it addresses any

FIFO register, thereby generating SEL FIFO L.

The registers internal to U47 (high byte) are addressed by MBA01-04 H,

and the registers internal to U48 (low byte) are addressed by MAD01-04

H. Identical Information will be presented on these address lines

when they are strobed by the Z8038, so the same register in each

device is always selected. Read and write operations are determined

by MBWR L and are always performed on a 16-bit-word basis by the

Microcomputer. Since the registers in each Z8038 are 8-bits-wide,

those registers which control the internal operation must be loaded

with the same eight bits of information; i.e., the high byte and the

low byte of the data word must be identicai.. Specifically thc

registers which muat be accessed in this psuedo byte manner are as

follows:

4- 13

KIC&OAUS

REGISTER ADDRESS (MI) ACCESS 2 LpE

Control Register 0 70200 READ/WRITZ

Control Rei13tsr I 0t202 tUAD/)WRITE

Control Register 2 70211 RED/LURIT

Control eLegister 3 71214 READ/WRITE

.nterrupt Status Register 0 70204 HlAD/WRITTZ

Interrupt Status Register 1 70206 READ/WRITE

Interrupt Status Register 2 70208 READ/WRITE

Interrupt Status Register 3 7020A READ/WRITE

Byte Count Register 7020E READ ONLY

dyte Count Compare Register 70210 READ/WRIT-

The registers which use only the low byte of data are as follows:

MICROBUS

REGISTER ADDRESS (ACCESS TYPE

Tnterrupt Vector Register 7020C READ/WRITE

Pattern Match Register 7021A READ/WRITE

Patte" Mask Regipter 7021C READ/WRITE

The remaining registers are used to transfer 16-bit words between the

two ports of the Z8038. They are as follows:

4-14

[I

MICROBUS

RIGISTER ADDRESS (HSI) ACCESS TYPE

Message Ot Register 70216 RiAD/WtITE

Message In Register 70218 EJAD/WRITE

Data Buffer Register 7021E 1EAD/WRITE

To add a degree of versatility to the Port 1-side of the FIFO, two

features have been implemented. First, the Z8038 interrupt mechanism

operates at the same level as the Microcomputer Interrupt Controller

circuitry (refer to Paragraph 3.6). This allows the FIFO to generate

vectored interrupts for a variety of reasons, when enabled. Second,

"the internally-generated WAIT signal is used in a slightly different

manner. If the Microcomputer attempts to write into a full or read

from an empty Data Buffer Register, BUFFER WAIT L will be asserted by

the Z8038. This signal is used to activate a Wait Timer. Since the

Microcomputer is ultimately a slave to the host system, the Wait Timer

gives more flexibility to host system - Microcomputer interaction.

BUFFER WAIT L triggers U53B (SN74LS123), the Wait Timer, and both

TIMEOUT L and TIMEOUT H are negated. This enables U55A (SN74KS32) to

generate FIFO WAIT L, which causes extra WAIT cycles to be inserted in

the current Microcomputer memory cycle. If BUFFER WAIT L is still
asserted at the expiration of the Wait Timer's timing interval, U54A

(SN74LS74A) will be clocked into its active state, asserting TO ERR H

and indicating an error condition. The assertion of TIMEOUT H by the

Wait Timer disables FIFO WAIT L, allowing the Microcomputer to

complete its current memory cycle. Since U53B is retriggerable, it is

only at the end of its timing interval that the state of BUFFER WAIT L

becomes relevant. In what can be regarded as normal operation, the

FIFO WAIT L signal will be controlled exclusively by BUFFER WAIT L,

and U54A will continue to be clocked into its inactive state by

TIMEOUT H.

4-15

v

The Vector Register, U49 and U50, consists of two 16-by-5 FIFO

memories (SN745225), operating in parallel. When a host system

interrupt occurs, the vector is placed on the Unibus data lines

UBDOO-08 H. This data is clocked into U49 and U50 by WR VECR H. When

data is present, LO RDY H and HI RDY H will be asserted, generating

HOST INTR 1i which interrupts the Microcomputer at the highest Vectored
Interupt level. When the Microcomputer reads the Vector Register, RD

VEcR L is asserted. This enables the tri-state outputs of U49 and U59

which now source Microbus data lines MBDOO-08 H. If more than one

vector has been written into the Vector Register, the absolute level

of HOST INTR H will follow the absol ire level of RD VECR L. Thus,

when the Microcomputer comp'etes its read operation, RD VECR L will be

negated and HOSr INTR H will again be asserted. This transition of

HOST INTR H is uandatory for the proper operation of the Interrupt

Controller circuitry. If the Vector Register is full when WR VECR H

is asserted, U52A (SN74S74A) will be clocked into its active state and

VECR OVFL H will be asserted, indicating an error condition.

4.2.6 Unibus Acquisition Logic (Sheet®)

The Unibus Acquisition logic allows the IPPA to generate interrupts to

the host system. Operation begins with all flip flops on Sheet

reset; all but U58B, which is self-resetting, are reset by RESET L.

The host system must enable interrupts by setting bit 5 and/or bit 6

in the CSR. These CSR bits appear at the "D" inputs to U56

(SN74LS74A) and enable the Unibus Acquisition logic. When the

corresponding clock signal occurs, i.e., either CLK ERR H or DONE H,

U55B (SN74LS32) will assert GET BUS H. When U57A (SN74LS114A) is

cloc'ed, MY BR H is set and, on Sheet (C), the appropriate BUS BRn L

will be asserted. When the host Priority Arbitration logic issues a

grant at the corresponding level, and when this grant is passed to the

IPPA as BUS BGn IN H, it will be asserted as GRANT IN L at the input

of inverter UllE. The inverted signal, GRANI H, disables U55C j

4-167

- .~ - ~ - %

(SN7ALS32) and clocks U58A (SN74LS74A). With MY BR H asserted at its

"D" input, U58A is set in its active state, asserting MY SACK H and MY

SACK L. MY SACK H will assert BUS SACK L (Sheet 0) and also resets

MY BR H at the next clock to U57A. Whenever U57A is reset MY BR H is

asserted, indicating that the IPPA is not requesting the Unibus. MY

BR H at the "D" input to U58B will generate GRANT OUT L whenever the

flip flop is clocked by GRANT H. U58B will be reset when the incoming

grant, GRANT IN L, is negated. In this manner U58B acts to "pass the

grant" whenever the IPPA is not requesting the Unibus.

Returning to the case wh-• the IPPA has generated the bus request, MY

SACK L is asserted, which clears U56 and also enables U6OA (SN74LS32).

If or when BBSY H is negated, indicating that the Unibus is not in

use, SET BUSY L will be asserted. This direct-sets both U57B and

U2OIA (SN74LS114A); U57B asserts MY BUSY H, which generates BUS BBSY L

(Sheet @), and MY BUSY L. The tri-state outputs of buffer U61

(SN74LS244) are enabled, and the Internal Data Bus is sourced with the

vector -elected by SW2, a 7-pole DIP switch. MY BUSY L also maintains

the assertion of SET BUSY L and enables one input of U154B. ENB VEC

OUT L enables the low-byte data transceivers on Sheet B , placing the

vector on Unibus data lines BUS DOO-07 L, enables a second input to

U1546, and also disables the clocked resetting of U201B. If or when

SSYN H is negated by the previous Unibus operation, U154B will be

enabled, and U2OB will be clocked into its active state, generating

MY INTR H and MY INTR L. The assertion of MY INTR H causes BUS INTR L

(Sheet @) to be placed on the Unibus and also enables one input to

U59D. MY INTR L disables the clocked resetting cf U57B and also

enables U55C. When the incoming grant is negated, GRANT H will also

be negated. This allows U55C and U59B to generate CLR SACK L, which

resets U58A and negates SET BUSY L.

When the host system has read in the vector, it will issue BUS SSYS L,

which causes SSYN H to be asserted and enables U59D. On the next

4-17

clock to U2NA, the flip flop viii be reset, negating ENB VEC OUT L

and removing BUS INTR L from the Unibu*. Finrlly, on the following

clock, U57B wLll be reset, revoving BUS BISY L from the Unibus. This

templetes the Interrupz cycle.

4-18

LAd

4.3 Microcomputer (Sheets thru

The Microcomputer consists of the following logic circuitry:

o Microprocessor and System Clock Generator

0 Program ROM

o Program RAM

o I/O Control and Error Register Buffer

o System Timing Controller

o Interrupt Controller

4.3.1 'Microprocessor and System Clock Generator (Sheet Q

The ZBOUIA is the 6-H1egahertz, segimented versio, of the ZOUOO

Microprocessor. Those aspects of the Z8001A which are levant to the

1PPA hardware will be discussed in this paragraph. A more thorough

description of the Z8000 cen be obtained by consulting thoae reference

documents listed in Section 6.

The use of the circvtýry associated with the Microprocessor is sivilar

to that developed for standard applications. MADOO-15 H are the

multiplexed address/data lines from the Z8001. U66-U68 (SN74S373) are

octal, tri-state latches which use the buffered Address 3trobe, BAS H,

as the "enable" input. When BA3 H is negated, the Microbus Address,

MBAOO8 H, is latched for the current Hicrocomputer cycle. The

Microbus is defined as the collection of buffered address, data, and

control signals which are used to transfer inform&tion within the

Microcomputer. The segment outputs SEGMTO-2 H are used ah the upper

three addresseF., MBAI6-18 H, of the Microbus. The outputs of U66-U68,

~ 4 4-19

as well as the remaining Microbus buffers, are enabled by ENB BUS L.

Since no devices currently in the IPPA hardware are capable of

requesting use of the Microbus, ENB BUS L will normally be asserted.

U69 and U70 are octal, bidirectional bus transceivers (SN74LS245)

which buffer data between the Microprocessor, MADOO-15 H, and the

Microbus, MBDOO-Ij H. When DATA STB L is asserted by the

Microprocesor, it indicates that the multiplexed address/data lines

are being used to transfer data. The use of this signal in the timing

of data transfers will be discussed in Paragraph 3.3. The direction

of date transfer is controlled by WRITE L; when ass~rted, it inditates

a transfer from the Microprocessor, to the Microbus. When WRITE L is

negated and BDS H is asserted, READ DATA L is asserted; this directs

the data from the Microbus to the Z8001 during a read operation. U65

is an octal buffer (SN74S244) for other Hicrobus control signals.

The Z8001 status lines, STATUS 0-3 H are decnded by U63 (SN74LS138)

and 16.2, the System Clock Generator (AmZ8127), to determine the type

of transaction currently in progress in the Z8001. When STATUS 3 H is

asserted, U63 is disabled and the Microcomputer is accessing its

memory space for a data transfer. When STATUS 3 I1 is negated, U63

decodes the transaction - either a dynamic refresh cycle or an

interrupt acknowledge cycle. STATUS 3 H is buffered by U65 and U225A

to provide MEM CYC H and HEM CYC L for use elsewhere in the

Microcomputer. The System Clock Generator, U62, generates all clock.

signals used in the Microcomputer. It generates ZCLK H, the

6-Megahertz clock used only by the Z8001, and it provides

general-purpose system clocks at the foll wing frequencies: 24.0

Megahertz, 6.0 MHZ, 3.0 Megahertz, and 1.5 Megahertz. U62 also

controls system initialization by asserting MICRO RST L, either during

power-up or in response to MAN RESET L; this signal is asserted by

pushing SW3, the manual reset switch.

If certain devices in the Microcomputer cannot respond of perform

properly in the period normally allocated, MICRO WAIT L will be

4

I ~4- 20

asserted. This causes U62 to assert WAIT L to the Microprocessor,

which will then insert WAIT cycles in the current transaction until

WAIT L is negated. U62 has an internal counter which generates an

internal timeout signal if MICRO WAIT L it asserted for more than 16

clock cycles (4.0 microseconds). This signal will generate a

Non-Maskable Interrupt only if TIMEOUT L is asserted.

This allows the FIFO Wait Timer to extend the timeout interval to its

period. A Non-Maskable Interrupt will also be generated when HARD ERR

H is asserted (Sheet®), indicating, that a critical hardware error

has been detected. The Microprocessor's Non-Vectored Interrupt input

is controlled by SOFT ERR L, which when asserted indicates that a

non-critical error has been detected. The Vectored Interrupt input is

the remaining input which is used on the Z8001. An interrupt request,

VEC INTR L, can be made by either the FIFO (Sheet ®) or the

Interrupt Controller (Sheet)

4.3.2 Program ROM (Sheet ()

The Microcomputer address space is decoded into 64K-byte "pages" by

U72 (SN74S!38). Wen HEM CYC H is asserted (ENB BUS L is normally

asserted), the Microcomputer is accessing its memory space and

MBA16-18H are decoded to generate an enable signal to the

corresponding page. U89C (SN74LSOO) asserts MC REQ H if the
Microcomputer accesses the Associative Memory.

Before discusaing the program ROM circuitry, a brief mention of the

possible PROM options should be made. The logic has been implemented

to accept both 2K x 8 and 4K x 8 pin-compatible PROMs. The logic also

allows the substitution of MOS EPROMs for standard bipolar PROMs. The

error detection logic for Non-Existent ROM is configurable for the

type and number of PROMs installed.

4-21

These options are configured using one patch plug, PPI, which is

connected as follows:

0 For 2K x 8 PROMs, HBAi2-13 H are connected to RON

ENBO-1 H, respectively, and +5VDC is connected to ROM

A12 H.

o For 4K x 8 PROMS, HBA12-14 H are connected to RON Al2

H and ROM END-i H, respectively.

0 For a 2K x 16 address space, connect MBA12-14 H to ERR

SELO-12 H, respectively. For 4K x 16 address space,

connect MBA13-14 H to ERR SELl-2 H, respectively, and

connect ERP. SELO H to GROUND. For an 8K x 16 address

space, connect MBAI4 H to ERR SEL2 H and connect both

ERR SELO-1 H to GROUND. For a 16K x 16 address space,

connect ERR SELO-2 to GROUND.

0 For PRO~s with an access t ie greater than 220

nanoseconds, add the number of WAIT cycles required

for valid access by removing GROUND from WAIT 1-3 H,

as appropriate.

WAIT I q = 385 nanoseconds maximum access time

WAIT 1-2 H - 550 nanoseconds maximum access time

WAIT 1-3 H - 715 nanoseconds maximum access time

The Page 0 enable signal from U72, ENB ROM L, enables the Program RON

circuitry during a memory access. ENB RON L enables U8B (SN74LS139),

which decodes ROM ENB 0-1 H in order to select one-of-four pairs of

ROM integrated circuits, and it also enables one iput of both U136B

(SN74LS02) and UIOC (SN74LS02). If an attempt is made to write into

4 4-22

Page 0, U136B will assert DAD WR H and U74A (SN74LS74A) will be

clocked set when -he address strobe, HBAS L, is negated. This asserts

RON ACC ERR H, indicating an error coalition.

When NBNR3Q L is asserted, two actions are initiated. First, U75D

(SN74LS32) is enabled, which will generate the enable signal, ENB ROMn

L, corresponding to the select signal, SEL ROMn L, asserted by U83.

The combination of these two signals will enable the tri-state outputs

of one pair of PROMs, which will provide the data word to the

Microbua, MBDOO-15 H, from the locatlon addressed by MBAOI-11 H and

ROM A12 H.

Second, when MEM CYC L is asserted, U1OC generates ROM ACCESS H. If

an address is accessed outside the address sppce created by the ROM

Plug, PPI, l10D will assert CLK NX ROM H, which clocks U54B

(SN74LS74A). This asserts NX ROM H, indicating as error condition.

ROM ACCESS H also places U76 (SN74LS195A) in the "shift" mode. If the

ROM Patch ?lug is configured to generate WAIT cycles; U76 will have

been loaded with the number of ones corresponding to the number of

desired WAIT cycles. At the next transition of the clock input, 6M

CLK H, a one will be shifted into the "Q " output, and its

complementray output "Q " will assert ROM WAIT L. U203A (SN74LS21)

responds by asserting MICRO WAIT L to the System Clock Generator

(Sheet 0), until a zero is shifted into the "Q " output and ROM WAIT

L is negated. This allows the Microprocessor to complete it memeory

cycle, at whcih time MBMREQ L will be negated. When ROM ACCESS H is

negated, U76 will once again be loaded with the value at its parallel

inputs.

4.3.3 Program RAM (Sheet (D)

Page 2 and Page 3 in the memory address space have b*en allocated for

Program RAM. Access to either page will either ENB LO PM L or END HI

PM L. U51D (SN74LSOO) then asserts ENB PM H, which enables the

4-23

Program RAM circuitry. The RAM itself consists of eighteen 16K z I or

64K x 1 dynamic RAN integrated circuits' -U91-U108. These are

separated into two equal groups - the low byte and the high byte -

each containing eight data bits and one parity bit. the Program RAM

can be acessed on a byte or word basis by the Microprocessor. Byte

and word access is controlled by U89A and U89B (SN74LSOO). When

MBWORD L is asserted by the Microprocessor, indicating a word access,

both ENB LO BYT•. H and ENB HI BYTE H are asserted, enabling both the

low and high byte of Program RAM. When MBWORD L is negated, only one

byte will be enabled, and this is determined by the state of MBAOO H.

The Zo000 accesses the high byte at eve• addresses.

The address to the RAN circuits, PRAM AO-7 H, is multiplexed by U86

and U87 (SN74S157). When 16K x 1 RAM circuits are used, PRAM A7 H is

disregarded. The "&" inputs to U86 and U87, MBAO-08 H, are used as

the row address -o the RAM. The "B" inputs, which are used as the

column address, are selected by the RAM Patch Plug, PP2. When 16K x 1

RAM circuits ave used, MBA08-14 H will be selected as the "B" inputs,

and 16K MODE L will be connected to GROUND. When 64K x 1 RAM circuits

are used, MBA09-15 H will be selected as the "B" inputs, and 16K MODE

L will be connected to +5VDC.

When either a valid memory read/write cycle or a refresh cycle is in 3

progress, MBMREQ L will be asserted by the Microprocessor. MBMREQ L

is used aw the re- address strobe to the RAM. Since SEL COL H is

currently negated, U86 and 687 select the row address as PRAM AO-7 H,

and this is strobed into tVe internal row address latch. U27C

(SN74LS132) delays MBMREMQ L 40 nanoseconds and then asserts SEL COL H,

which causes U86 and U87 to select the column address as PRAM AO-7 H.

If a valid read/write cycle is in progress, the Microporcessor will

next assert BDS H. This is the buffered Data Strobe, a timing signal

the Microprocessor uses to control data transfers. Since ENB PM H is

asserted, BDS H will be the remaining enabling input to U90 and U90B

4-24

• • • • • • :•=.,•:•. ..- = -•,• -- • ,.• L,.7' .,•!" 7 . _.£ - -. -. i -. ••,•'• • LI7

F!
(SN7AL•IO). This causes LO CAS L and HI CAS L to be asserted,

depending on the state of 1NB LO BYTE H and ENB HI BYTE H,

respectively. LO CAS L and HI CAS L are the column address strobes to

the RAM. The assertion of LO CAS L and/or HI CAS L cause the column
address, now selected by U86 and U87, to be strobed into the internal

column address latch. The "CAS" signal controls the Internal

mechanism of the RAM. During a write operation, indicated by the

assertion of MBWR L, data from the Microbus, MBDOO-15 H, is strobed

into RAM when the "CAS" signal Is negated. During a read operation

the assertion of the "CAS" signal also enables the tri-state output

buffers, so that the RAM now sources data to the Microbus.

U11O and UlIl (SN74S280) continuously generate an even-parity signal

for the Microbus data, MBDOO-15 H. During a write operation the
Micriprocessor will place a word (byte) on the .. icrobus and U11O and

Ulll will assert or negate GAN HI PAR H and GEN LO PAR H accordingly.

These signals are connected to the "Data In" inputs of RAM circuits

U99 and U108. When the "CAS" signal is negated, these parity bits

will be strobed into the RAM, along with the RAM, along with the

Microbus data.

During a read operation U99 and U108 generate RD HI PAR H and RD LO

PAR H at the same time that the remaining RAM circuits source the

Microbus; U11O and UIlI again generate parity for the Microbus data.

U112A and U1I2B (SN74S86) perform an exclusive-OR between the parity

bit which is read from U99 and U108 and the parity signal which is

currently generated by ULL0 and U111. If the parity is dissimilar,

U112 will ussert HI PAR BAD H and LO PAR BAD H accordingly.

These signals are inputs to U9LA and U91B (SN74LS08), and if they are

asserted during a read operation, U88 (SN74LS74A) will be clocked into

an active state at the end of the memory cycle by the negation of HI

CAS L and LO CAS L, indicating an error condition. U88 is

self-latching, so the error indication will remain until it is cleared

4-2 5

-I

by the Microcomputer. MBWR L at the input of U91. inhibits error

detection during w•ite operations.

UI09A and UIO9B (SN7,LS02) are used to detect non-existent addresses I
when 16K x) RAM circuits are used. While in the 16K mode any address

access beyond 23FFF(HEX), the 32K-byte boundary, will cause U74B

(SN74LS74A) to. be clocked into its active state, indicating an error.

U74B is clocked whenever Program RAM is accessed and when the Microbus

Address Strobe, MBAS L, is negated.

4
F f'I

4-26

4.3.4 I/O Control and Error Relister Buffer (Sheet O)

The I/0 Control logic decodes the address space for the Microcomputer

Peripheral Page and generates various control signals. Primary
address decoding is done by U77B (SN74S260) which asserts VALID I/o H

when HBA1L-15 H are all negated. VALID 1/O H enables U113 (SN74SI38)

and disables U73B (SN74LS27), which prevents clocking U117A

(SN74LS74A). ThIL. flip flop, when set, indicates an access to

non-existent 1/O. When Ull.l is enab)•.rd by ENB I/O L and MEN CYC L,

the Microcemputer is addressing one ef its peripheral devices; UI13

decodes KBA08-lO H and asserts an enable signal to one-of-eight
devices.

U114 (SN74LS138) is enabled by ENB IC L to decode MBA05-07 in order to

select one of the five Interrupt Controller integrated circuits (Sheet

Because of certain timing specifications for both the FIFO (Sheet

and the System Timing Controllers (Sheets () and G), access to

these devices is performed in a controlled manner. Shift registers

U116 and U204 (SN74LS195A) functioa as timers in teh access sequence

to insure that valid access and recovery times are met. U116 controls

recovery for both the FIFO and the STC, while U204 controls access

time which Is only required for the FIFO. Both U116 and U204 are

initially cleared by RESET L, so RIP H, END WAIT L, and 1/O WAIT L are

negated. If either END FIFO L or END STC L is asserted, U91C

(SN74LS08) will assert SLOW L. This allows U60B (SN74LS32) to assert

LD TIMER L, which parallel-loads U116. Since a zero is loaded in from

the "D" input, both ENB WAIT L and RIP H remain negated. If END FIFO

4-27

L is asserted,U6OC will assert SEL FIFO L and the Microprocessor will

access the FIFO. RNB FIFO L will also allow U136C (SN74LS02) to

assert FIFO ACC H, which puts U204 11a the "shift" mode. The next two

clocks to U204 will shift ones into "QD', and its complementary output

will assert I/0 WAIT L. This generates two WAIT cycles in the memory

cycle.

If RNB STC L is asserted to initiate the access sequence, UI15

($N74LS138) is immediately enabled to decode MABO5-07 H in order to

select one of the eight System Timing ,ontroller circuits. The

Microprocessor performs this access during a standard memory cycle.

When the access is completed, SLOW L will be negated. This puts U116

in the "shift" mode, and on the next clock a one will be shifted into

"ID"' asserting both ENA WAIT L an RIP H. RIP H disables U6OB, U60C,

and U136C; ENB WAIT L disables one "enable" input to U115 while it

enables one input to U109C (SN74LS02). This state is maintained until

U116 shifts a zero from its J-K input into "QD"" If another access is

made and SLOW L is asserted, U109 C will cqsert WAIT H. Regardless of

L'• device being accessed, RIP H will disable U136 C, which prevents

the possible assertion of FIFO ACC H and keeps U204 in the "load"

mode. At the next clock to U204, a one will be parallel loaded into

"QD" and I/O WAIT L will subsequently be asserted, causing the

Microporcessor to insert WAlT cycles in its standard memory cycle.

This will continue until the timing interval of U116 expires (1

microsecond). if this second access is to the FIFO, U204 will

immediately bc. placed in the "shift" mode when RIP H is negated, and

the memory cycle will be extended for an additional two WAIT cycles,

as before, to allow the FIFO to be accessed.

U205 (SN74S133) and U206 (SN74LS3O) generate the clocks to U207. When

any "hard" error occurs, CLK HD ERR H will be asserted, clocking U207A

into its active state. HARD ERR L generates a Non-Maskable Interrupt

to the Microprocessor. U207A is cleared when the Microporcessor

4-28

status decoder (Sheet @) asserts NMI ACK L. When any *soft" error

occurs, U206 will assert CLK SIFT ER H, which clocks U207B into its

active state. SOFT ERR L generates a Non-Vectored Interrupt to the

Nicroporcessor. U2071 is cleared when the Nicroporcessor status

decoder asserts NVI ACK L.

U208 and U209 (SN74LS224) make up the Error Register Buffer. When the

Microporcessor reads the Error Register, RD ERR L is asserted; this

enables the tri-state outputs of U208 and U209, which now source the

Microbus MBDOO-i5 H. RD ERR L at the "D" input to U210 A (SN74LS74A)

causes the flip flop to be clocked into its active state, asserting

CLR 10 H. 'When access to the Error Register is completed, RD •KRR L

is newkted, whiuh c'•ows US1B (SN47LSOO) and U2OCB (SN7ALSOB) to

assert CLR ERR L. This signal, which is also generated by RESET L,

clears the errot-latching flip flops used in the IPPA hardware.

U211A Pad U211B (SN74ALS32) generate the special signals, I/0 RD L and

1/O Vi L, which are used primarily by the System Timing Controller and

Interrupt Controller circuits.

4.3.5 System Timing Controller (Sheets D and

As described in the previous section, the Microprocessor accesses one

of the System Timing Controlier circuits (Am9513), U118-U125, by

asserting SEL STCO-7 L. These signal ., along with I/O RD L, 1/O WR L,

and MBAO H, control read and write operatiouis to the circuitu. The

internal trn-state bus buffer can either accept data frcm or source

data to the Microbus, MBDOO-15 H.

The Am9513 has twenty-one internal registers which function as control

and status registers and as "data" registers. These regiters are

used to configure the operation of the Am9513. Reference material has

beea included in Appendix A which provides a more thorough description

of the hardware and software operation.

4-29

After each of the five internal 16-bit counter's has been configured,

its oplration relies primarily on three external signals. Two input

siguals will provide a "source" and a "gate" to the counter, and an
"out" signal will be generated when the counter overflows. This "out"

signal generates an interrupt request to the Interrupt Controller.

4.3.6 Interrupt ConLroller (Sheet ®)

The Interrupt Controller, U126-U130, utilizes five Am9519-1 integrated

circuits. The Am9519 has eight internal registers plus a vector

memory, which are used to control its operation. These registers are

accessible to the Microcomputer when it addresses the Interrupt

Controller and asserts SEL ICO-4 L. Data is transferred via the lover

byte of the Microbus, MBDOO-07 H; I/O RD L, I/O WR L, and MBAO1 H

control tha transfer. Appendix A contains reference material

pertaining to hardware and software operation of the Am9519.

Internally, IR9QO has the highest priority; externally, ths five

circuits are cascaded so that U126 has the highest priority, followed

by U127, etc. When an external interrupt request is made - or

multiple interrupts - VEC INTR L will be asserted by the Interrupt

Controller. When the Microprocessor status decoder asserts VI ACK L,
the Inrt-upt Controller asserts IC WAIT L and WAIT cycles are inserted

in the r.icrocomputer interrupt cycle, if necessary. The internal
mechanism of the Am9519 allows the vector corresponding to the highest 41

priority unmasked pending request to be asserted on the Microbus.

When the vector is asserted, IC WAIT L will be negated, allowing the

Mlicrocomputer to complete the interrupt cycle. The Interrupt

Controller uses RESPONDING L as an internal control signal.

4-30

4.4 Associative Memor ,Sheets thru

The Associative Memory consists of the following logic circuitry:

0 Timing and Control Logic

o Addressing Logic

o Address Associative Memory

0 Data Associative Memory

0 Comabinational Associative Memory

The Associative Memory operates iii two modes. In the ~'HALT" mode the

Associative Memory is accessed as Page 4 and Page 5 in the

Microcomputer'e memory address space. Control and access is nearly

identical to that of the Microcomputer Program RAM (Sheet @) From

an operational standpoint the only difference is that the Associative

Memory can only be accessed on a word basis. As with the Program RAM

all refresh is controlled by the Microprocessor.

In the "RUN" mode Associative Memory access is controlled completely

by its own timing and control logic. The basic memory cycle has a

300-nanosecond period, but the access cycles overlap to allow some of

the Address and Data Associative Memory outputs to address the

Combinational Associative Memory.

Figure 4-2 shows the Simplified Block Diagram, which is common for all

three memory groups. The RAM can be addressed by the Microcomputer

(in the "HALT" mode), the Refresh Counter, or the source for the

actual association. Data can be transferred between the R"% and the

Microbus (in the "HALT" mode), or RAM data can be latched during an

association cycle for use by the Qualifier Logic.

4-31

F
4V'

00

4-3

II !--

4-32

4.4.1 Associativ3 Memory Timing and Control Logic (Sheet 0)

Timing within the Associative Memory in generated by flip flopa

U131-UI34 (SN74S74, SN74S112, SN74S14). With the exception of U131A,

these flip flops are initialized in their inactive 'atate by either

RESET L or HALT 2 L. UI31A produces Lhe complemertary 20-Megaherty

clock signals, 20M CLK L and 20M CLK L, which are derived from a

40-Megahertz oscillator. The "RUN"/"HALT' mode of the IPPA hardware

is controlled by U133B and U212B (SN74LS74A). U212 stores CS. bits 8

and 9, which are written by the Microcomputer when NWR CSR L is

negated. U133B synchronizes the output of U212B with the Associative

Memory Timing and Control Logic.

4.4.1.1 Microcomputer Access

With U132 and U133 reset, U135C negatea STATE 6 1I which disables

U135D; this negates the Microcomputer-access-inhibit signal from U71F,

INH MC L. This keeps U13A (SN74LS74A) clocked in its active state
with ENB MC H asserted. This enables U136D, asserting ENB MEM L,

which enables multiplexer U139 (SN74S158). U139 generates the "RAS"

and "CAS" signals to the dynamic RAM circuits. RUN H is the

inpue-select signal to 0139; in the "HALT" mode the "A" inputs are

selected. These inputs are controlled by U135B (SN74LS08), ULO9D and

U136A (SN74LS02).

Anytime the Microcomputer accesses Associative Memory, MC REQ H will

be asserted. A secondary function of MC REQ 1, is to enable the

locking of U117B (SN74LS74A). If CLK ACC H is generated while in the

"RUN" mode, the assertion of RUN H causes U117B to be clocked into its

active state. This asserts RAM ACC ERR H, indicating an error

condition. The primary functio of MC REQ H allows the dynamic RAM to

respond to the Microcomputer's current read/write cycle by enabling

both U109D and U136A. The assertion of MBMREQ L will then generate MC

RAS H, and the assertion of MBDS L will then generate MC CAS H. U139

4-33

/L

I I

II

3c

LL
t1j

Ii ..

>-

I a

j L

S~0

[tj

SIZE CD II
A 04660

434 SCALE STHEET

FORM NOON O(v. 10460 4-34 CALE H•.LI

uses tbese signals to simultaneously assert AD RAS L and C RAS L,

followed by AD CAS L and C CAS L. U1353 allow the assertion of DISH

L to also enable U109D. This causes NC RAS H to be generated during

all Kicrocomputer memory refeesh cycles.

4.4.1.2 Access & Timing and Control

Figure 4-3 has been provided as a general-purpose timing diagram to

show the relatiouship among various timing and control signals and may

be referred to during the following discussion.

U132 and UI33A make up a synchronous divide-by-six counter, which

gives the Associative Memory its 300-nanosecond cycle. All critical

timing is referenced to or synchronized with this counter. As was

previously mentioned, the counter is initially disabled by HALT 2 L,

but as soon as the "RUN" mode is entered, the counter is enabled. To

clarify the discussion the six 50-nanosecand periods of this counter

will be referred to as STATE 1-6, and the transitions into the states

will be referred to as XTI-MT6.

Sometime after the host system writes a "RUN" command into the CSR

'Command Field, the Microcomputer will actually write the "RUN" bit

into U212B. CSR RUN H is asserted and on the next clock to UI33B, RUN

H asserted and P.ZLT H, HALT 1 L and HALT 2 Lare negated . Since CSR

HALT H is now negated, U135D (SN74LS08) is disabled and ENB HELT H is

negated. This keeps U133B set until the Microcomputer clears the

"RUN" bit. This action will be discussed shortly.

The transition from the "HALT" mode to the "RUN" mode is critical to

the proper operation - and data integrity - of the dynamic RAM

circuits. This transition, however, is a natural outcome of the

Microcomputer's setting of the "RUN" bit in the CSR. CSR RUN H is

asserted when MBMREQ L is negated, and the next possible Microcomputer

memory cycle will not begin for well over 100 nanoseconds. Within 50

4-35

... . .- . - - --- -

nanoseconds of the assertion of SCR RUN H, U1333 Is clocked and the

mode transition takes place. Since the transition is a result of the

Hicrocosputer addressing Its I/O Page, the transition adheres to all

timing and access specificatione for the dynamic RAN circuits.

In the "RUN" mode the dynamic RAM is continuously accessed for either

a data cycle, where an association is made, or a refresh cycle.

U131B, U137B (SN74LS74A), and associated gates detemine the type of

access cycle. Whenever teh host System transfers data, CLK CPD H will

be asserted which clocks U137B into its active state; this asserts

DATA REQ H. During STATE 6 the "D" input to UI31B is sampled. If

DATA REQ H is asserted, and if a refresh cycle is not required,

indicated by DEMAND RFSH H, then U131B will be clocked into its active

state, asserting DATA C¥C H. In essence, UI31B will be clocked into

its active state, asserting DATA CYC H. In essence, U131B functions

as an arbitrator for the next memory cycle. DATA CXC H enables

counter U140 (SN74LS161A), which will negate DIM R H in

approximately 10.5 microseconds, if it is not cleared by the negation

of DATA CYC H. U141A and U141B are partially enabled by DATA CYC H,

which allows U134 (SN74S114) to generate "CAS" signals to the memory

circuits. DATA CYC H also controls one of the "select" inputs to the

memory address multiplexers, which are discussed in Paragraph 3.5.

When U131B is clocked into its inactive state, a refresh cycle will be

generated to the memory. Since the arbitration does not occur until

STATE 6, a refresh cycle will always be the first cycle performed when

the "RUN" mode is entered.

U133A and U134 generate the "RAS" and "CAS" signals to the memory. AD

RAS L is asserted during STATE 1-3, and C RAS L is asserted during

STATE 4-6. If a data cycle is being performed, AD CAS L will be

asserted during STATE 2-3, and C CAS L will be asserted during STATE

5-6. When U134 negates a "CAS" signal, the appropriate strobe signal,

jLD STROBE H or C STROBE H, is generated to the Associative Memory

Latch.

4-36

The transition from the "RUN" mode to the "HALT" mode is also critical

to the operation of the dynamic RAM circuits. When the Microcomputer

clears CSR bit 8, U212B negates CSR RUN H and asserts CSK HALT H.

During STATE 6 U135D asserts END HA'.T H. This causes two actions to

occur. First, U71F asserts INH MC L, which clears U137A and places it

in its inactive state. This negates END HC H, removing on* of the

enabling inputo to U136D. Second, the "K" input to U13 B is now

enabled, and at time MTI the flip flop is clocked into its iuactive

state. This asserts both HALT H and HALT L and negates RUN H,

removing the remaining enabling input to U136D. This negates END MEN

L, which disables U139 and temporarily prevents access to the dynamic

RAM circuits. Host important is that this action takes place at the

end of a memory access cycle.

Now in the "HALT" mode, U135D is ajgain disabled by the negation of

STATE 6 H, and ENB HALT H and INH MC L are also negated. This allow&

U137A to be clocked into its active state at the end of the next

Microcomputer memory -ycle when MBMREQ L ts negated. END NC H once

again causes U136D to assert ENB MEM L, and access to the Associative

Memory is enabled. This action insures that a minimm of 150

nanoseconds will pass between access by the Associptive Memory Timing

and Control logic and acceso by the Hicrocomputer.

4.4.2 Associative Memory Addressing Logic (Sheet®)

The Addressing Logic provides the three different sources for the

Associative Memory. While in the "HALT" mode, U152 and U153

(SN74LS157) multiplex the Micorbus address signals, MBAOl-16 H, to

provide MO AO-7 H. This is done in a manner similar to that used with

the Program RAM.

Binary counters U150 and U151 (SN74LS161A) provide the refresh

address, RFSH AO-7 H, when the "RUN" mode is entered; the counters arc

initially cleared by HALT L. In their operational modc the counters

4-37

are Incremented at the end of every refresh cycle, so that all

locations in the dynamic RAMs are refreshed. RFSH CYC H enables the

counters, and STATE 8 H provides the clock pulse.

U1j46-U149 (SN14LS374) latch the address and data currently accessed by

the host system's Central Processing Unit. Data from the CPU console,

DISP DOO-15 H, is clocked into U148 and U149 by CLK CPD H. The

latched data, CPU DOO-15 H, is then used to address the Data

Associative Memory (Sheet () during an association cycle.

The CPU address, CNSL ADRSOO-15 H, is clocked into U146 and U147 by

CLK CPA H. The latched address, CPU AOO-15 H, is then used to address

the Address Associative Aemory (Sheet during an association

cycle. The source for the address latch is selected by 2-to-l

multiplexers U142-U145 'SH74S157). U73C (SN7LS27) decodes DISP ADRS

SELO-2 H and asserts gEL PA H when the Address Display Select Switch

on the host system console has been places in the "PROG PHY" - Program

Physical - position. The "B" inputs to U142-UI45 will now select the
upper-sixteen physical address signals, DISP ADO6-21 H. When the

Address Display Select Switch is in any other position, the

lover-sixteen (virtual) address signals, VAOO-03 H and DISP ADO4-15 H,

are selected by the "A" inputs to U142-U145.

4.4.3 Associative em.ory (Sheets • thru &

The three sections of the Associative Memory - ARAM, DRAM, and CRAM -

can be discussed collectively because their physical operation is the

same. One Sheets and @ U213 is used to generate a 50-nanosecond

window in which the row address to the dynamic RAgs is selected and

strobed into the appropriate circuits. The two flip flops are

identical but are required to provide fan-out to the twelve RAM

address multiplexers, U155-U158, U173-Ui76, and U187-U190 (SN7ASI53).

On Sheet U33D (SN7428) provides the fan-out for the other

multipleýzer input-select signal, BUF RFSH H. When DATA CYC H is

4•I4-.38I

L!----

negated BUF IFSK H Is asserted.

lWhen the IPPA Is In the "HALT" mode, HALT L maintains both U1313

(She) and U213 In their Inactive state. This causes RFSH CYC B
to be asserted and negates both AD ROW L and C ROW L. With both

Input-select signals at a HIGH level, the multiplexers select their

"1C3" and 2C3" inputs, HC AO-7 H, which originate at the

Microcomputer. During a valid Microcomputer access to the Associative

Memory, all inputs to U24C (SN74LSlO) on Sheet (@) will be HIGH, and
ENB MC ACC L will be asserted. This enables tri-state transceivers

U168 and U182, which buffer the data between the Microbus, MBDOO-15

and the corresponding memories, CRAM DO-3 H, DRAM DO-3 H, and ARAM

DO-7 H. The direction of the transfer is controlled by RD DATA L.

Parity is generated and checked in a manner identical to that used

with the Program RAM (Paragraph 3.3). On Sheet @ U60D (SN74LS32)

insures that WR ENB L is asserted only when in the "HALT" mode.

When the "RUN" mode is entered, the type of cycle is determined by the

timing and control logic described in Paragraph 3.5. During a refresh

cycle, BUF RFSH H is asserted, and the "RAS" signal is asserted. This

causes the multiplexers to select their "1C2" and "2C2" inputs, RFSH

AO-7 H, the refresh address. Since the "CAS" signals are not

generated, the address presented to the dynamic RAM circuits outside

the row address window is inconsequential.

During an association cycle, the assertion of DATA CYC H negates BUF

RFSH H, and the "RAS" signals are again generated within the row

address window. With both input-select signals LOW, the multiplexers

select the "%CO" and "2CO" inputs, which are the low bytes of the
source for the association. The ARAM and DRAM sources were described

in the previous paragragh. On Sheet the source for the CRAM

association is a combination of host system status signals latched by

U185 ad U186 (SN74LS378) and outputs from the ARAM, AM D08-11 H, and
DRAM, AM D04-05 H. Approximately 25 nanoseconds after the appropriate

4-39

"RAS" signal is asserted, U213 is clocked into its Inactive state,
negating AD ROW L and C ROW L. The multiplexers now select the lCI"

and "2Cl" Inputs, which are the high byte* of the source for the

associatioL. After the address has stabilized, the appropriate "CAS"

signal in asserted and data in the dynamkc RAN is accessed. At the

end of each access cycle within the aasocfation cycle, either AD
STROUE H or C STROBD H will clock the data Into the Associative Memory

Data Register, U169 and U183 (SN74SI74) or U199 (SN74S175). U169,

U183, and U199 store the data, AN DOO-15 H, for imediate use by the

Qualifier Logic discussed in the following paragraph. In the "HALT"

mode these registers are cleared by HALT L to prevent premature

interaction with the Qualifier Logic. When the "CAS" signals are

negated, the appropriate parity-error latches, (SN74S74), U172 and

U196A, are also clocked.

4-40

.31

.0

4 , ý t' 4 tIV l I ar -P 11V I t NPgrw tT o .4ftA

--

W

KID0

@11 0CotA

to -1

\00
.24-¶2

£ 7

TU s

E 4 Vk SI

, 00

qbA,

44

0a

2 2

-og Q

4-43

IPAI

.04.

'22

J& a

~r

H',V

0 id

4-4

IL-

000

w ~ i 8 I Uc

iI It ell_ ED(5

~~Ti 9 U"g g - .1,~23 1 1

0:

CA~

~1y® 6p

tt t

(2)
(5 IS t &da

Ai

4-45

*11

I.. VI.

4 w

T I

4-4

4 (¶9 ftF
20

HO__Lill

Kj -j 4 41C
~.g'4 ~ § ' 17

*L

Lr

I.Iifi

JJ

AlL 27
GO 4-47

-. -AA

EFF

Set!

ILh

l~izz

!Z I g'S I2 [_______

~> 7

4-48

~ds

8 0

Io'

II

'a

lp 0

C4@

4-49

I -I

43.1

22

0~ I

L% rl ri

aa

rp IR S IA

011

4-50
A

If21= 3 9 1 W 8 J J

~lip

0- -

ego

4-c4c

J J~

It ~

I #A

÷I

"0 I

WP I E

2 m

r4m
I I TII T -

-A I I I

- - -- - - - --

cc a-

h- Zr -

÷

~i

noa

4. 5

011
.s S U 0 1 2 a a

a iI
:

"'it.'it
zCL

elf)

4-53i+U~

ke At
V. 116o

Fr_ _ _

it n, % i i t01 1ý' F'l rel e

ILI

4-54

Uo

I ??a

j !5 I -

40s

4-5
0a

lip----~s-

cooo

OL.

A; A5 A 11 ,1

A ssa An Ai ~ ~ c 'IAAleaL, -

9 AL N

4L od 's . D-

2: a Ez : it

4-56

I
Ito

Is I A

'p n

~.3

ell Ike

-i .

4-57

A

- -b-Igor,

40CALvA I© -

rr

CC4

"~d

4-58

I T

71w

D

j J7 F.De

C. .'

- rr

TVT u-ano
4-.-59 0

(90

'7 I 7

I.r

;4

r Tr0

o P

~~~~@ 0 v @a@ ,j

4 G®

4-60



It
-'-

-p -a loo

S IS

444L

U @0

CAC

1Vi 16 1

@; 4-6f~ 4
ZI~ A



4rZ

ACT

me jI
'p zIV

06 0

cj Qq

0J 0a Ao.'

4-62
Uj



1-21

a21 1

"E T I 4-.63



SECTION 5.0
PRELIMINARY PARTS LIST

(MAJOR COMPONENTS)

and

TIMING DIAGRAMS

I]

---- -SIZE CO IDENT NO. D M NM.o!

A 04660 r
5-1 SCALE SHEEr

O RI M m"I wA-|V-6 ( EV. 9-78a -I ENT



PRELIMINARY PARTS LIST (MAJOR COMPONENTS)

ITEM PART NO. DESCRIPTION LOCATION QUANTITY

I SN74LSOO Integrated Circuit U51, U89, U202 3

2 SN74LS02 . U10, U109, U136 3

3 SN74LS04 " Ull, U71, U138, U225 4
4 SN74LS08 1U12, U25, U59, U91, U135, 9

U200, U217-U219
5 SN74S08 " " U171 I

6 SN74LSIO 1U24, U90 2
7 SN74LS11 .... U141 1

8 SN74LS14 " " U226, U227 2

9 SN74LS20 " U U13 1

10 SN74LS21 .. U203. U232 2

11 SN74LS2i ... U73, U154 2

12 SN7428 . it U33 1
13 SN74LS30 " " 1U206, U214 2

14 SN74LS32 " Is U), U55, U60, U75, U211 5

15 SN74LS51 " " U230, U231 2

16 SN74LS73A J " Y220, U229 2

17 SN74LS74A " " U14, U19, U21, U23, U26, 20
U42, U52, U54, U56, U58
U74, U63, U117, U137, U207,
U210, U212, U223, U224, U228

18 SN74S74 ... U131, U172, U196, U213 4

19 SN/4S86 U U112, U197 2

20 SN74S1i2 " " U133 1

21 SH74LS114A " " U57, U201 2

22 SN74S1 1 4 " " U132, U134 2

23 SN74LS123 ... U53 1

24 SN74LS132 It. U27, U215 2

25 Sq74LS133 It. U205 1

26 SN74LS138 ... u63, U72, U113-4115, U221 6

27 SN74LS139 .us8 I

28 SN74S153 " U155-U158, U173-U176, U187-4190 12

29 SN74LS157 ... U142-U145 4

SZICMC WENT la. OWN "a

A 04660
52 WALE LI"

FORM aIIIA-1V-v (W v. ,-?)Un

_ 4



ITEM PART NO. DESCRIPTION LOCATION QUANTITY

29-a SN74S157 Integrated Circuit U86, U87, U152, U153 4
30 SN74S158 " t U139 1

31 SN74LS161A " " U140, U150, U151 3
32 SN74S174 I" If U169, U183 2

33 SN74S17S " " U199 1

34 SN74LS195A " " U22, U76, U116, U204 4

35 SN74S225 " " U49, USO 2

36 SN74LS244 ... U43-U46, U61, U208, U209 7

37 SN74LS245 ... U69, U70, U168, U182 4

38 SN74LS260 " " U77, U222 2
39 SN74S280 "f B U110, U111, U170, U184, U198 5

40 SN74S244 " " U65 1
41 SN74.LS373 .I U66-U68 3

42 SN74LS374 " " U38-U41. U146-U149 8

43 SN74LS378 " " U185, U186 2
44 0S8641 " " U1-U5, U15-U18, U28-U32 14

45 AZ8001A " U64 1
46 AmZ8127 U62 1
47 Z8038A " U47, U48 2

48 Am9513 " U118-U125 8
49 Au9519-1 " U126-U130 5

50 Am25,..S2518 " " U20, U34-U37 5

51 Am25LS2521 " i U6, U7 2

52 HM-7616 " " U78-U85 2-8
* 52 2716 of " U78-U85 2-8

* 52 2732 " " U78-U85 2-8

53 NMC5295 t " U91-U108 18

** 53 NMC4164 " U91-U108 18

** 53 2118 " U91-U108 18

54 NMC4164-1 of U159-U167, U177-U181, U191-U195 19

55 CO-238A Oscillator 40 MHZ 1

represent alternate parts

*' *I 000 1flNT •M MS. meIA i04660 •,
5-3 WALE--lEyT

pOU .an" V~ soS g4v (o. 9.111



71(

Im

Iw

L.J

vi 0o iwD

"SZ CO IDN N.I

' I

4MA 10466

5-4 WAL lIME



Kitt

I--

C6 u

: ' J3 '3

C363

c,

I u

Iei .jI j j - . j

j j CA k

cm ~ ~ ~ ~ ~ , -A- o 4 c jU .c

5~ IN w VI nj I• )., s-0 I laE

A 046601
5- SCA SH[E

FOR am" of



-� - �.-..

*1

-uII

I
-� -urni

rfI�

F I 1I

.3

I

T T
00 �

4 0 .L u.
-I

N.

* � 44

Z � � -�'� 4 -�
N.. i.A� I I

� ,.,

7-r a

5-6

I

- ,. - - �t.



•go

j rj

T 7

4-

5-7



vC DO1/M ZMOUL/AnfUA
Chate. Number Symbol Parameter M M Ift M OI

I TcC Clock Cycle Time 250 2000 165 2000
2 TwCh Clock Width (High) 105 2000 701 2000
3 TwCI Clock Width (Low) 105 2000 70 2000
4 TIC Clock Fall Time 20 10
5 TrC Clock Rise Time 20 10-
6 TdC(SNv) Clock I to Segment Number Valid (50 pF load) 130 110
I TdC(SNn) Clock I to Segmont Number Not Valid 20 10
8 TdC(Bz) Clock I to Bus Float 65 55
9 TdC(A) Clock I to Addr•-e Valid 100 75

-10- TdC(Az) - Clock ! to Address Float 68 55-
11 TdA(DI) Addre", Valid to Data In Required Valid 455' 305M
12 TsDI(C) Data In to -lock I Setup Time so 20
13 TdDS(A) DlS t to Address Active 80. 40'
14 TdC(DO) Clock I to Data Out Valid 100 75

- IS - ThDI(DS)- Data In ýo M I Hold Time 0 0
16 TdDO(DS) Oats Out Valid to M I Delay 295 1953
17 TdA(MR) Address Valid to MREQ I Delay (55)" (35)'
18 TdC(MR) Clock I to MREQ I Delay 80 70
19 TwMRh MREQ Width (High) 210' 1358

- 20- TdMR(A) - MPEQ I to Address Not Active 70" 35"
21 TdDO(DSW) Data Out Valid to 1 I (Write) Delay 55. 35'
22 TdMR(DI) MREQ I tc Data In Required Valid 350" 225"
23 TdC(MR) Clock I MREQ I Delay 80 60

24 TdC(ASO) Clock : to 73 I Delay 80 60
S25 8 TdA(AS) - Addrew Valid to M I Delay 55" 35'

26 TdC(ASr) Clock I to 5 I Delay 90 80
27 TdASMI) X3 I to Data In Required Valid 340' 215'
28 TdDS(AS) S ! to X3 I Delay 70" 35"
29 TwAS X Width (Low) 85" 55.

- 30- TdAS(A)•- X3 I to Address Not Active Delay 60' 30"
31 TdAz(DSR, Addrwý, Float to DS (Read) I Delay 0 0

32 TdAS(DSR) X3 I to D3 (Reed) I Delay 70' 36'
33 "dDSR(DI) M (Read) I to Data In Required Valid 185" 130'
34 TdC(DSr) Ciock I to M I Delay 70 65

- 35-- TdDS(DO) M I to Data Out and STATUS Not Valid - 75* 45'
36 TdA(DSR) Address Valid to '% (Reed) I Delay 180' 110'
37 TdC(DSR) Clock I to D (Road) I Delay 120 85
38 TwDSR M (Read) Width (Low) 275" 185'
39 TdC(DSW,• Clock I to IM (Write) I Delay 95 80

- 40- TwDSW - " (Write) Width (Low) 185' 110*
41 TdDSI(DI) M (Input) I to Data In Required Valid 320M 200'
42 TdC(DSI) Clock I to M (I/O) I Delay 120 100
43 TwDS 1% (L/O) Width (Low) 410' 255"
44 TdAS(DSA) M' to M (Acknowledge) I Delay 1065" 60"

- 45- TdC(DSA) - Clock I toD D (Acknowledge) I Delay - 120 85-
46 TdDSA(DI) 1% (Ack.) I to Data In Required Delay 435" 296.
47 TdC(S) Clock I to Status Valid Delay 110 85
48 TdS(AS) Status Valid to X5 I Delay 50s 30'
49 TsR(C) AM to Clock I Setup Time 180 70

- 50- ThR(C)- M= to Clock f Hold Time 0 - 0
51 TwNMI RT Width (Low) 100 70
52 TsNMI(C) NM to Clock I Setup Time 140 70
53 TsVI(C) Vt, NVI to Clock I Setup Time 110 50
54 ThVI(C) V', NVI to Clock I Hold Time 0 0

S55- TaSGT(C)- 3M to Clock I Setup Time 70 55
56 ThSGT(C) S to Clock I Hold Time 0 0
87 TsMI(C) M to Clock I Setup Time 180 110
59 ThMM(C) Vff to Clock I Hold Time 0 0
59 TdC(MO) Clock I to MO Delay 120 85

- 60- TsSTP(C)- to Clock I Setup Time 140 70
61 ThSTP(C) 3" to Clock I Hold Time 0 0
62 TsWT(C) WM to Clock I Setup Time 50 30
63 ThWT(C) WM to Clock I Hold Time 10 10
64 TsBRO(C) M=• to Clock I Setup Time 90 80

- 65- ThBRQ(C)- M to Clock t Hold Time 10 10 -
66 TdC(BAKr) Clock I to OUS I Delay 100 75
67 TdC(BAYI) Clock I to MM I Delay 100 75( C GCck.a-.YC-umsdesWfWW dwactrIIiUCI S tfALe an bck pop. 5-8



canoe"oi.tmen da

gr~ dil fs not Vo1w actual
:."en sequemat Refor to
Noi diagram a"W~ for mne

9do "d tin"en rotateonw 1P
prum lutratm"n as an

= TW'lf0 the verojs

t w"" aenwacm. etsa

Output 2.OV 08v

input OV ii63 Fkt v 0 Si

5-



-- FYqArV 6 I ft4Azbr~J
S 11 TdA(DI) 2TcC +. TwCh - 150 ns 27cC *TwCh - 95 no

13 TdDS(C) TwC - 25 n TWO- 30 as

16 TdDO(DS) TcC * TwCh -860 no TcC + TwCh - 40 ns

19 TwMM - hTcC -40 - 4 sTcCC-030___
17 TdMA(?A) T#CI - 35 no TwC - 35 ns

215 dCDW TwCh - 50na TwCh -35 no
-27 TdAS(DI) ZTcCC- 150 nt 2TcC- 105ano

28 TdDS(AS) TwCI - 35 a TwCI - 35 a
29 TwAS TwCh -20 no TwCh -IS na
30 TdAS(A) TwCI - 45 a TwCI - 40 a
32 TdAS(DSR) rwC - 35 as TwC -35 aa

-33- TdDSRCDI)- TcC + TwCh - 170 ano- TcC + TwCh - 105 na
35 TdDS(DO) TwCI -30 as TwCI -25 no
36 TdA(DSR) TcC -70 as TcC - S5no
38 TwIDSR TcC +. TwCh -80 ns TcC + TwCh -S50as
40 TwDSW TcC -65 a. TcC - 55no

-41 - TdDSI(Di)- 2TcC - 180 no 2TcC - 130 am
43 TwOS 2TcC - 90 n 2TcC -7S ns

44 TdAS(DSA) 47cC + TwCI - 40 ano 4TcC + TwCl - 40 rs
48 TdDSA(DI) 2TcC +. TwCh - 170aas 27cC +. Tw~h - 105 no
48 TdS(AS) TwCh - 55m TwCh - 40 a

Zilog, Inc. 10460 Bubb Road, CuPertin, California 95014 Teeph~one (408)446-466 TWX 910-338-7621

I'00-2004-A 5-10 Pnned in USA



2DmII CPU ngnbm Spabd Pmiw -4 as m 111 no,".
haIm I TwAS nFL-w Wil -P 70

2 WaLAS A ~ v =1 .iU n 10
3 r"AAS) Adu to /r 30
4 ?jCOUM o r SwLSss. 0
3 ThCSDIAM ri Mrs How T 40
I TdASM ) Wto i 40
7 T&AIMS latem ~

Tj ( w Rin Da Tim ad

60 

ik 
i

1 dSm is Adr Dý hbm Onm
13 Tdm= is ?,. ON gElw D- -us .i T

14 3d0lmbd NO ( ~

11gme Es. No WV& WaImay

16 Wito au mm rw oo5-701



£Aekuvhdgu aAAI e
2a MUMLAS UTX r6 IM mw -
22 TdOSAUMR NWwAwmwis) I to Dam . Delay 310
33 ?wQSA M(Ashnwia)_ 4! m
24 TdAs=~ xrIb Dis= a YW) U 4

U ?aIWB) Z1 I Iso*TlIM 100

amfa Td=ý u Sawl Tim
or Muam do ai un bkon amun n O& we m Asaa o

ING

5-12



SI

31 T= M awDus.m Chw" to I 4re

Wn3CM SION I s Wily I .~~ 1 Iif 611

< s =dAMI mcw
36T U=t mCc37 TFLM WIR I C- cd"I

A dM 4 07 mTV

am

Flew. U. saw bumv Imiaq

5-13



2.2". 3.qW Nube Symnbol papamnw Mo s NINE 3..

2 ?di~s"WA.? MI tW=?:t..., -
3 T4AZ%- WAM =. o .WX Do.
4 TdSAKM~. w a o

S Td$H oc 0

1£ ?dDA.ZF.14i QNTi "am 14knjd
L Tdo"MAu0 is' amm &A. nowm 70 -

lava. a. a..miWit

ZiBum Roset

ITd=D5Q Dela Osmim ri to =I fur no item 40 na

nvom ua. saw. m= nesng

~~t~O 0~C25-14



IhW~M UA= mdm o aW I
2 T4W33 AddmoSamwgsto Ig

3 TAIi Admw "W= 0 a 1

L WI TlaoI la

10 mUZWR Ta toW

12 Td3~aW t Aw Vl Om AfvDelay a 0
13 Uv(DIft. Uto Domn O4.. 3ali n..

13 Td!1*AýIffII Deft &a FIGO 70-

is ~ ~~ *&-b i oW

2. rata 04d"blumA I w VI I emtinýFGýu 0 4 w a 11 nowmn
I h L * m w omo *arms==& CCla

fgn.m 4L.Nn&i ad

5-15 131 C:



21 ?*ID IV I lo O f

26 ?WIDRaA hod bw wI hdI
a ThALU=) m~

adm 'l:-t Ow&o

t ~ ~ ~ ~ m~t a1go of&;4w A~hm ~a

5-16



_ _ _ _ _ _ _ a an WIN so
* 1W0IT) M~Wemo"wUt to vask

a~~~ W5WD a w WI

a T3c as CMO t 5.7

36~~ 5,?M m W '

T~mw= ow towr 5.I6TUM %v OOI*a
3. biw~nshasCl

won Th

r 
5-u7



ram"aI Td=DWT) Wirna WMT im

3 TdA=WT) ACW O;Urm6
4 TOMMlWZ) ifil to~am

4 TdA=hLR) zXM& A
7 T'dOAC=I) It I

I ram) O ui WK
I* TdDmA ifu D o".-

11 TdDMA=DH U'om.eAd 2

1. Doe duw a hem *MOM& AS 48u 0. 6e - = I W ).Wu. IWO me

urn

Iom~PWNl

k 5-18



SWITCHING CHARACTERISTICS oper rove iMSNoimss 2. 3.4 AN ,S:
Amg'wo 11" alo "3f

tAVft C;0VWaAO uuLnw T, me
?A~W Q0 VOW 0 VIIS Nop 2 II, I

1TQCMC X Mlps*alX2 M 2Pswhl 24 Hau{ 5

rc~cL U No 0 X2 ua (x2 No ft" mI I 24 ?a IU I

TL X2 Lowa mx w"in .ww in "M 24 j70] l

room GsAV lam ""p to CsA S&AM li" ileas Cvau Twftl Nub 0 24 140

?W'f cow Seam M"pa POUT VOIN ~to) no 4

AN UNoaGoovew ii4 Qq M"ros24 4

Tc *AM 24 X071
Gwv c"smm HIP I os *a You (ML to) M biim c 0"TW 24 0

TO~~ OM VOW a MNi MO~ (Nalbs & 13) fie~I
TMNAX ftusiN 501 C.0OOMIn Cam 0A

7Tftw fu" Mloin c ane swea li.(NMM7, to) 23 0 rd

TM40X fte A"s fm Ow n 2

SftW No 04OW at ipkWhrMMu

T"Q olipan Melsll 71" (Mm ae' topU 00

?M4ft AmU Nop 10 f" l (111101 IRO) U row n00FIG

T004 AiS loips cb No (MMd I%~s Tbs U Od

PAWM Lowato Oem *A yeW 23 ISO

ftoO AM Learn Ca OwanOen (Om lha Oft Theup 30 - I

f"L" oamn Aiwoi (ft"md P~Durf M"~ (is)M ISO 00'

TEaft. winZ0 GebS(lbeuis) U3 20 42

raw" SI CS Lam Yb Nip (NiM Ill In 1 I I' I
TWMX -Oft lip tdo Ow1 Cum U3 0 - nso

TwMX vi~ib ips om 0M in G"e011 _____ o U 0 I
TW)QO" N W~lpCa cam w"lNo(NOW & Iat?) 23 400'1

TyWef V~ 1No aip am Vw (NMI &3&17) a [gu

TwLww Ofb No 0s M40 N lip inbAeOw~i 10 --

5-19



Tom ?WN
IPM a M 6I3

0-"m
0IEU

tuftW =iNY"Woo

lam U_ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _

"OlOYI roo

Agter 2L4& Counter SWIthN WwAvorma

TOM TIM5-To



SWITCHING CHARACTERISTICS Over Ovorating Range INotes 2. 3. 4. 5)

Doaeer Oecpdope Mm.L Max. Mi1111. max. Unft
TAVAL C. CVald ONC3LOWtoRW aLOW I' o j o n

TA;;Z. GO Vali Wild C9 LOW 10 wies LOW 0 0 no___
MIo" PwLOW 10 am 4G.l (NM6) 71 375 75 375

Tt=G In, ps; Reques Valid tGow lifisma ReuetontCA_20_ 3

T141 GMa =r LOW I=_A___

TXLM. =HnL 1060 M104INOW1s0. 11) 925 toW me

TKI(At 1 LO~W 10 rA LOW 25 173 25 125 m

TICLOV Low to Om Out Vow IMasse) 25 3W 25 1200 me

Trnimx Ra m o" aDat o 20 2W0 20 100

?NILOV Reed LOW a 06 Out VOiW 3W 2W0 no__
T1RLOX Read LOW 10Dels 0111Unknown so no

TRLR4 PeON LOW to ROMd NEOI(M Puls Dursation 300 260 '

TWS4AX WRHMa 110 Qd U and CY Don't Care 0 0 no
1V4HQX WftMOM lo OM in Don'tCame 0 no '

1V4HR Writ HIGH Io Asod or wrot LOW (Wro i~s R50ely) 600W 400 '

rth1wm I Wtos Low all writes mEoN fw- Pulse oursasni, 1......... 25

1. Typicl values ore for TA - 25'C, nominal supply volt- high following an internal delay. TKLCL will govern
age and nomninol processing parameters. the falling edge of "I when El is always high or is

2. Test conditions sassume transition times of 20ns or high early in the acknowledge cycle. TENCL will gov-
less, timinig reference levels of DISV and 2.OV and emn when 91 goes high later in the cycle. The rising
output loading of one TT). gate plus l00pF, unless edge itf El will be determined by the lenqth of the

ohrienoted. r.,rcediflg priority resolution chain._rno remains low
3.Transition abbreviations used for th* switching 'iritil after fie rising edge of the lACK_ gulse that trans-

parameter symbolis include: N - Nigh. L - Low, V - bers he last response byte for the selected IREO.
Valid, X - unknown or don't Cars, Z - high imped- 9. TA conditions for the El line assume timing rotor-

ance. nce levels of DISV and 2,OV with transition limes of
4.Sinaol abbreviations used for the switching parameter iOns or less.4.Symgos include: R Read. W - Writ@, 0 - Data 10, Test conditions for the ED line assume output loading

Out, 0 - Data in, A *Address 103 and C-0), KC In- of two LS 771. gates plus 30oll and timing refoerence
terrupt Acknowiled N - Enable Out. E - Enable In. levels of O.SV and 2.OV. Since EQ normally only drives

FP - Pause. C ., El of another Am9519, higher speed operation can be
5. Switching parameters are listed in alphabetical ordor, specified with this more realistic lest condition.
6. During the first lACX pulse, PAUSE will be low long i1. The arrival of _I~r will cause EQ to go low. disabling 1

enough to allow for priority resolution and will not go additional circuit$ that may be connected to EQ If no
high until aftear 0T goes low iTCLPHI. valid interrupt as -jonding. EO will return high when 6:
7 KLQV applies only to second, third and fourth A is high If a pending reouiset is selected. EQ will stay
pulses wnile Rip is low. Ouring the, first I-Z pulse. low until aftear the last IACrK pulse tor that intarrupt is

a4ta Out will be valid following the telIling edge of AWCompleite and RIP grist high___
TCL^_Vl 12. VON specifications do miot apply to TPor to M~NT

8. M *s pulled low to nidicate (hit ani -itsrruat request when active-low. Those outputs are ocion-draiin and
has coon selected. "ICannot be pulled low until El is VON levels will be destermined by external Circuitr.

5i-21



I ISWITCHING WAVO .ORMS A S

m !m

.g A....A..-....

~iI

Interrut Operations

i Ii .

OsMOM

row"imAf t O4,

max

Data Bus Transfers

5-22



6.0 LIST OF SELECTED DATA SPECIFICATIONS

6.1 SELECTED DATA SHEETS

(1) NMC4164 Dynamic RAM (64K x 1)

(2) 2118 Dynamic RAM (16K x 1)

(3) NMC5295 Dynamic RAM (16K x 1)

(4) HM-7616 Bipolar PROM (2K x 8)

(5) 2716 MOS EPROM (2K x 8)

(6) 2732 MOS EPROM (4K x 8)

(7) SN74S225 FIFO Memory

(8) Am25LS2518 Quad D-Type Register

(9) Am25LS2521 Eight-bit Comparator

6.2 SELECTED PRODUCT SPECIFICATIONS

(1) Am9513 System Timing Controller

(2) Am9519 Universal Interrupt Controller

(3) AmZ8127 Z8000 Clock Generator

(4) Z80v-. Serial Communication Controller

(5) Z8038 FIFO Input-Output Interface Unit

6.3 DATA SHEETS FOR MAJOR COMPONENTS DESIGNATED FOR USE WITHIN
THE PERIPHERAL ACTIVITY MODULE.

(1) IDM2910A Microprogram Controller

(2) The Am29116

6-1

L



APPENDIX A

DATA TABLES FOR IPPA SOFTWARE

1.0 HARDWARE STATIC MEASUREMENT BY C/T

1. preload value

2. data processing code

2.0 SOFTWARE STATIC kZASUREMENT BY SOFTWARE FUNCTION

1. frequency of collections

2. number of collections

3. processing format

3.0 EVENT

1. event name

2. definition of event

3. processing of event

4.0 STATUS

if: 1. status name

2. definition of status (starting and ending events)

3. processing of status

5.0 PREFILLED HARDWARE STATIC MEASUREMENT AND HARDWARE

CONFIGURATION TABLE

2. arm command
2. disarm command

3. preload value

A-1

___________________~.~L.~~~w2:-:1I.T,



4. data processing code

5. address of data

6. priority level

7. chip address

8. CIT address on chip

6.0 PAM STRUCTURE

1. CSR address

2. CSR bit patterns

3. word count register address

4. cylinder address register address

5. number of cylinders max

6. read/write to peripheral controller

7. number of NPR~s by controller and unit

8. number and role of interrupts

9. service time for transfer

10. Z controller busy (MBC also)

11. disk head position/motion

7.0 PREFILLED SOFTWARE STATIC MEASUREMENT AND TIME SAMPLED SOFTWARE

MANAGER CONTROL TABLE

1. measurement switch (on/off)

2. frequency

3. number of samples

4. processing format

8.0 INTERCEPTIVE MONITORING MANAGER CONTROL TABLS

1. measurement switch (on/off)

2. patch address

3. save patched executive

L7
A-2



9.0 ARAM AND DRAM INITIALIZATION

1. starting address

2. ending address

3. bit to set

10.0 CRAM INITIALIZATION

1. start bit pattern

2. end bit pattern

3. bit to set

11.0 EVENT TABLE

1. address of event instructions

12.0 EVENT PROCESSING TABLE

1. process a

process
2.process a

2.process a

F13.0 EMT CONVERSION TABLE

1. Event number of EMT1

2. Event number of ENT2

14.0 TASK NAME CONVERSION

1. task name

2. event number

3. mask register bit setting

A-.3



15.0 DATA DiSCRIPTION FILE

1. measurement name

2. collected data address

3. type of measurement

A-4



* I .. ~ .. ,-..T

MISO Ji
IOf

Rome Ai eeometCne
RA9 ptn nIIIue ee~cdvtpent~ n

anRomgi ee Airgzp twti Dev elopm tecnit Copeentere

i,6 p'iovided -to ESP P'Log'am 0O}~cceh6 (P0,6) and o-theA' ESV
etemeivt.. The. p'zincipat techniecat rr&61.on o.AeaA a'te
cominanication,6, eeectnomagneic. guidance an.-I contLoL, .6ut-
veittance o4 q'wund and ae'~ospac~e objec.t6, ~inteUigence da~ta
cottection and handting, ~i~no'tmati.on zyq6tem .technoeogy,
ionozphet'cic p'topaqation, e6oZ-d 6ta~te science6, rni.cJ~Aove.
phyqicz and etectkonic Aee~abi~tity, rant~ainabitiy and
compati~bitity.


